

Control Interface for Autonomous Robotic Brain Surgery using Magnetically Stimulated Particles

Weinberg Medical Physics Sponsors

Dr. Chad Ropp, Olivia Hale, Dr. Lamar Mair, Brad English, Dr. Irving Weinberg

GMU Senior Design Team

Elizabeth Ankrah, Minh Quan Do, Victor Huynh, Bassam Mutawak **GMU Advisors**

Dr. Nathalia Peixoto, Dr. Qi Wei

Background

Magnetic Particle Delivery

- Significance:
 - Transport of magnetic nanocarriers using external magnets
 - Potent form of noninvasive surgery; carriers loaded with various therapeutic payloads
- Limitations:
 - Crossing physiological barriers
 - Magnetic field attenuation affects deeper delivery
 - Impracticality of manual magnet array operation

Fig 1. Using magnetic fields to focus therapy to a deep tumour[1]

Relevance

Control Interface (CI) for Magnetic Control System (MCS):

- Weinberg Medical Physics (WMP) constructs electropermanent MCS
- CI enables autonomous magnetic particle delivery from nose to deep brain

Project Impact:

- Reduces surgical complexity
- Support research on deep-tissue particle delivery
- Enable autonomous control of magnetic particles

Objectives

1. Design software modules for MCS operation

2. Design interactive GUI for surgeon usage

Fig 2. Electropermanent bi-planar MRI under construction

Fig 3. Surgeon using a computer interface to implant a wireless pacemaker.

Requirements

Software Modules:

- Must collect and segment MR images to determine particle location
- Must guide particles along user-defined path
- Must output MCS commands for particle translation and activation

Graphical User Interface:

- Must display particle locations in real-time
- Must support 3D path input on MR images
- Must allow for manual termination

Fig 4. Ferrofluid droplet moving along a spiral path using magnetic coils[10]

Elizabeth

Testing & Evaluation Front-end Design Back-end Design

Minh

System Design Back-end Design Testing & Evaluation

Victor

Front-end Design Back-end Design System Design Testing & Evaluation

Bassam

Back-end Design System Design Front-end Design Testing & Evaluation

Project Scope

<u>Semester 1:</u>

- 2D particle translation through user input path
- Optical imaging
- Translate particles with induced magnetic fields via solenoid coils

Semester 2:

- 3D particle translation through user input path
- MR imaging
- Translate particles with electropermanent magnets

Testing Criteria

<u>GUI</u>

- All buttons successfully perform their specific functions.
- Users is able to design a path across multiple image slices
- Path can be modified mid-operation (when operation is paused)
- Acquired particle location coordinates are accurate and represented correctly by real-world distance
- Particle location is displayed on GUI in real time

Testing Criteria

Image segmentation

- Locates particles in image slices with maximum 5% positional error
- Processes and output images at a maximum period of 20 ms/image

Control Module

- Computes correct distance vectors to move particles through delivery path
- Communicates distance vectors to physics module
- Determines corrective actions if particles are not clustered around desired path location
- Executes operational commands from user (i.e. pause/terminate operation, redraw path, etc.)

Engineering Characteristics

Structural Division of Function

Codebase must be split into separate modules

Each module must have unique functionalities

Modular Hardware Connection

- System can operate using a variety of hardware components
- Seamless transition from one hardware component to another

Platform Independent

Software performance should be consistent across major operating systems

Safe System Operation

Module safety checkpoints with sensitive error detection

 Effective actions to mitigate
detected errors (gives user ultimate control)

Standards and Codes

Project will conform with FDA guidelines for medical software devices.

- Guidance for Industry and FDA Staff: Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices (2005)
- Software as a Medical Device (SaMD): Clinical Evaluation Guidance for Industry and Food and Drug Administration Staff (2017)
- General Principles of Software Validation; Final Guidance for Industry and FDA Staff Document issued (2002)

Approach 1: Control Centric Design

Approach 2: Feedback-Centric Design

Approach 3: Linear Operation with Regular Safety Checkpoints

Particle translation executed successfully and relayed to GUI. System is ready for next iteration.

Alternatives - System Architecture

DECISION MATRIX SCALE						
0	1	2	3	4	5	
Does Not Meet Objective Fully Meets Objective						

	Clear Information Flow	Operational Speed	Simple Hardware Communication	Integrated Safety	Responsiveness to Feedback	TOTAL SCORE
Control Centric Design	2	<u>4</u>	<u>5</u>	2	3	16
Feedback Centric Design	3	<u>4</u>	4	2	<u>5</u>	18
Linear Operation Design	5	2	<u>5</u>	<u>5</u>	5	<u>22</u>

Alternatives - Programming Language

	Object Oriented	Image Analysis Support	GUI Library Support	Hardware Library Support	Integration with Client Codebase	TOTAL SCORE
C++	4	<u>5</u>	<u>4</u>	5	5	<u>23</u>
JAVA	5	3	3	3	3	17
PYTHON	3	<u>5</u>	<u>4</u>	4	2	18
MATLAB	2	4	3	3	3	15

Alternatives - Image Segmentation

DECISION MATRIX SCALE					
0 1 2 3 4					5
Does Not Meet Objective Fully Meets Objective					

	Computational Efficiency	Additional Components	Ease of Implementation	Supported Documentation	Accuracy	TOTAL SCORE
Early Image Subtraction	4	5	<u>5</u>	3	4	<u>21</u>
Kalman Filter	3	2	3	3	<u>5</u>	16
Template Matching	2	5	4	<u>5</u>	3	19
Meanshift Tracking	5	2	3	4	3	17

Alternatives - Graphical User Interface

8		Cross Platform Support	Open Source	3D Graphics Support	Widget Toolkit	Access to Multiple Libraries	TOTAL SCORE
	Qt	5	3	<u>4</u>	<u>5</u>	<u>5</u>	<u>22</u>
	wxWidgets	4	5	3	4	4	20
	FLTK	3	5	2	3	2	15
7	GTK+	3	<u>5</u>	3	2	2	15

GUI Description - Main Window

MainWindow

Fig 5. GUI Main Window

GUI Description - Creating Delivery Path

Draw Delivery Path

Fig 6. GUI Pathing Window

GUI Description - Tracking Configuration

Particle Tracking Setup-

100

48

163

Confirm Particle Location

Press "Draw Particle Bounding Box" or adjust sliders/spinboxes to set parameters. Press "Preview" to preview image segmentation results. Adjustment parameters until particles are consistently located. Then click "Confirm" to finish.

Fig 7. GUI Image Segmentation Configuration Window

Hardware Description

1. Arduino receives instructions from GUI via USB-C

Fig 8. Arduino (top) and motor controllers (bottom)

2. Arduino sends commands to motor controllers

Fig 9. Motor controllers and solenoid connections

Hardware Description

3. Motor controllers run current through connected solenoid coils

Fig 11. Neodymium sphere magnet suspended in a solution with viscosity 23,000 m²/s

Fig 10. Four coil array with solenoid connections placed within fluid housing

4. Induced magnetic fields translate permanent magnets

Particle Movement Plots

Fig 12. Optimum Current Scaling Factor vs Distance to Travel (mm) vs Distance From Coil (mm) for Particle Translation in +Y Direction

Fig 13. Optimum Current Scaling Factor vs Distance to Travel (mm) vs Distance From Coil (mm) for Particle Translation in -Y Direction

Particle Movement Plots

Fig 14. Optimum Current Scaling Factor vs Distance to Travel (mm) vs Distance From Coil (mm) for Particle Translation in +X Direction

Fig 15. Optimum Current Scaling Factor vs Distance to Travel (mm) vs Distance From Coil (mm) for Particle Translation in -X Direction

Prototype Demonstration

Man-Hours to Date

Budget

Item	Quantity	Cost
Qt Development Environment	4	\$0
Microsoft Visual Studio 2017 Community	4	\$0
OpenCV	4	\$0
Sourcetree Version Control (AWS)	4	\$0
K&J Neodymium Magnets	5	\$7.50
Arduino MEGA 2560 Microcontroller	1	\$10
Roboclaw 2x60A Motor Controller *	2	\$0
Ipevio Ziggi USB Webcam *	1	\$ 0
4 Coil Array System *	1	\$0
Total Cost	\$17.50	

* Supplied by Weinberg Medical Physics, LLC

Semester 1- Timeline

• Control Module

Semester 2

References

[1] B. Shapiro, S. Kulkarni, A. Nacev, S. Muro, P. Y. Stepanov, and I. N. Weinberg, "Open Challenges in Magnetic Drug Targeting," Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 7, no. 3, pp. 446–457, May 2015.

[2] E. Y. Yu et al., "Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection," Nano Lett., vol. 17, no. 3, pp. 1648–1654, Mar. 2017.

[3] S. Jafari et al., "Magnetic drilling enhances intra-nasal transport of particles into rodent brain," Journal of Magnetism and Magnetic Materials, vol. 469, pp. 302–305, Jan. 2019.

[4] J. D. Opfermann et al., "Semi-autonomous electrosurgery for tumor resection using a multi-degree of freedom electrosurgical tool and visual servoing," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 3653–3660.

[5] J. Dong, Y. Shang, K. Inthavong, H.-K. Chan, and J. Tu, "Numerical Comparison of Nasal Aerosol Administration Systems for Efficient Nose-to-Brain Drug Delivery," Pharm Res, vol. 35, no. 1, p. 5, Dec. 2017.

[6] X. A. Si and J. Xi, "Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols," J Vis Exp, no. 111, May 2016.

[7] U.S. Department Of Health and Human Services, "Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices," May 2005.

[8] U.S Department Of Health and Human Services, "Software as a Medical Device (SAMD): Clinical Evaluation - Guidance for Industry and Food and Drug Administration Staff," June 2017.

[9] U.S. Department Of Health and Human Services, "General Principles of Software Validation; Final Guidance for Industry and FDA Staff," January 2002.

[10]A. Nacev et al., "Towards Control of Magnetic Fluids in Patients: Directing Therapeutic Nanoparticles to Disease Locations," IEEE Control Systems Magazine, vol. 32, no. 3, pp. 32–74, Jun. 2012.