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1. Executive Summary: 

This document provides the preliminary design review (PDR) for the Fall 2018 - Spring 2019 senior design 

project (Project Magneto) in collaboration with George Mason University (GMU) and Weinberg Medical 

Physics LLC (WMP). The highlight of the PDR is the evaluation of alternate design approaches to fulfill the 

project’s technical requirements and the objective justification for the selected approach. In addition, this 

document contains several other areas of administrative and technical information. 

 

Our project is the design and implementation of a software control interface for operating an electropermanent 

magnetic control system (MCS). This MCS is constructed by WMP to transport and activate magnetic particles 

loaded with therapeutic payloads inside the human body. Our project will operate the MCS to autonomously 

deliver these particles along a user-defined path. 

 

The control interface will consist of 4 overarching modules coded in C++: 

 

1) Graphic User Interface (GUI) 

2) Image Segmentation Module 

3) Control Module 

4) Physics Module 

 

Technical aspects for this project include, but are not limited to, a thorough understanding of magnetic fields 

and gradients, therapy carriers, MCS operational specifications, GUI design and functionality, software 

engineering, and C++ programming. 
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d. Rationale for Selected Approach 

e. System Components Description for Selected Approach 

f. Applicable Formulae/Algorithms 

g. Applicable Standards and Codes 

 

4. Next Steps 
a. Hardware Testing and Evaluation 

b. Criteria/Metrics 

c. Budget 

d. Progress-to-Date and Schedule for the Next Semester 



2. Problem Definition: 

Despite recent advancements in research, major limitations are holding back clinical implementation of nose-to- 

brain magnetic particle delivery. These include physiological obstructions to particle transport, magnetic field 

strength attenuation as particles travel to deeper targets, and impracticality of manually operating magnet arrays 

in real-time. Weinberg Medical Physics is constructing an electropermanent magnetic control system to address 

many of these issues. To supplement their device’s operation, we will design and implement a control interface 

allowing for the system to autonomously deliver magnetic particles from the nose to user-defined locations in 

the deep brain. Depending on the type of particle, various therapies such as drugs, genes, or heat could be 

delivered to these locations. 

 

A. Objectives 
 

1. Design software control modules for MCS operation 

2. Design an interactive GUI for surgeon usage 

 

B. Requirements 
 

Control Modules (non-GUI) 

● Must track and segment magnetic resonance (MR) images to determine particle locations 
● Must guide particles along user-defined path via visual feedback 

● Must be able to perform particle manipulations including: Translation, Rotation, Aggregation, Dispersion, 

and Activation 

● Must include safety measures between every module-to-module interaction 

● Must be coded in C++ 

 

GUI 

● Must be able to receive, display, and process a three-dimensional (3D) path input from the user 
● Must discretize user-specified path into a 3D point array 

● Must be able to collect batches of MR images and display them intuitively on the GUI 

● Must be coded in C++ via QT integrated development environment (The Qt Company, Espoo, Finland) 

● Must include control panel with start/stop button(s) to begin and halt operations, settings button, status 

update of the operation, help button, etc.



3. Potential Application and Customers 

The primary customer of Project Magneto is our sponsor, Weinberg Medical Physics. Our software system will 

support the company’s research on magnetic particle delivery and activation through MRI image guidance. 

Upon further success in their testing, WMP plans to market their complete system (consisting of ultra-fast MRI 

machine, electropermanent magnetic control system, and software control interface) to potential clinical 

investors and customers. Below is a Q&A with WMP to express the significance of their research and the role 

of our project. 

 

Interview Q&A with Weinberg Medical Physics, LLC. 
 

1. What is WMP’s driving purpose for their research and development of an electropermanent magnetic 

control system? What clinical applications do WMP foresee that utilize the finalized system, and what are 

the biggest implementation challenges that WMP will tackle? 

 

The electropermanent system is able to provide image guidance with MRI and also 

preserves many degrees of freedom in transporting and activating magnetic particles. 

Eventual clinical applications will include cancer treatment, otolaryngology, and 

neurological and psychiatric disease. 
 

2. What is the significance of the senior design project (Control Interface for Autonomous Robotic Brain 

Surgery using Magnetically Stimulated Particles) for WMP’s system? 

 

This will be a first step in developing a treatment planning system. 
 

3. What sort of research/testing will WMP be performing with the finalized system (our software integrated 

with WMP’s electropermanent hardware)? 

 

We will build upon it by adding features and bringing it to FDA-mandated quality levels. 
 

4. What is WMP’s vision beyond their research with the finalized system? Will the system be advocated or 

marketed towards potential customers, and if so, who are the customers in mind? 

 

We have a global market in mind. Based in our initial market research, we expect more than 

1,000 users per year for the eventual therapeutic product. 
 

5. Beyond the specified technical requirements (e.g. programming language, UI functions), what are WMP’s 

measures of success for our senior design project? What criteria will WMP use to evaluate the project? 

 

It needs to work in guiding particles to a predetermined target. The software must be 

documented well enough so that somebody who is not familiar with the project can pick it 

up. 



4. Design Alternatives 

A. Engineering Characteristics 
 

The following engineering characteristics are guiding principles for our project design. All proposed 

alternatives meet these engineering principles. The justification for the selected architecture will be discussed 

under the later section, Rationale for Selected Approach. 

 

 Engineering Characteristics  Description 

 
Structural Division of Function 

Software architecture is compartmentalized into 

functional components with distinct areas of task 

execution. No module’s functions overlap with any 

others. 

 
Safe System Operation 

Safety checkpoints with sensitive error detection are 

placed after each module’s operation within the 

software architecture. Effective error mitigation actions 

are provided to the user. 

 

Modular Hardware Connection 
Software system operation is optimized for multiple 

hardware components. This allows for seamless 

transition from one hardware system to another. 

 

Platform Independent 
Software can be operated on multiple operating 

systems for versatility. Functionality will be the same 

on all compatible operating systems. 

 

B. Proposed Architecture Designs 
 

Before discussing the proposed architecture designs, it is important to note that following engineering 

characteristics are fulfilled regardless of the architecture. 

 

Fulfillment of “Modular Hardware Connection” 

 

The programming language established for our project (C++) allows for access to many supporting libraries for 

robotics programming and operating systems development. This allows us to integrate our software with 

various hardware from WMP. 

 

Fulfillment of “Platform Independent” 

 

C++ is a programming language with the characteristics of both high- and low-level languages that has proven 

to be popular for operating systems development. Using C++ allows for development of software that can 

easily be made compatible with many different operating systems. 



Approach #1: Control-Centric Design 
 

 

 

 

 

 
 



Feedback from Sponsor: 

Flow of information and timing of task execution for the modules is very ambiguous. System could work 

but would require a significant amount of multithreading and concurrent processes that would make 

development unnecessarily more complex and challenging. 

Approach #1: Control-Centric Design 
 

Overview: 

 

This design is termed “control-centric” due to the multiple major responsibilities fulfilled by the control module 

(e.g. calculating magnetic physical parameters and outputting commands to hardware). The control module acts 

as the sole connection between the software and the magnetic hardware system. 

 

General System Operation: 

 

1. An input image array is segmented by the Image Processing module to obtain particle(s) location and 

create a 3D representation of their current location. The locations are then sent to the Graphical User 

Interface (GUI) for the user to see. At a separate time, the physician draws a 3D path on the GUI. The GUI 

discretizes this second input and sends it to the next module. 

 

2. Prior to start of operation, the Control module waits to receive the discretized path and the current 

particle(s) location. The module computes the required magnetic field gradient and current to move the 

particle(s) along the user-defined path. This information is sent to the hardware microcontroller for 

execution. 

 

3. The Feedback module ensures that the particle(s) are on the user-defined path based on information send to 

it from the Control module. If the particle(s) deviate from the path, the module computes the necessary 

microcontroller command to return particle(s) on track. The computed command is sent back to the control 

module for execution. At the end of operation when the particles reach the target destination, the Control 

module confirms that system operation is complete. 

 

Fulfillment of Engineering Characteristics: 

 

Structural Division of Function Design utilizes 4 modules (GUI, Image Processing, Control, and 

Physics) with distinct tasks. 

Safe System Operation As the Control module is the sole software-hardware link, any 

commands to terminate execution or software errors can be caught by 

the module before reaching the hardware. 

Modular Hardware Connection *See prior paragraphs under Proposed Architecture Design. 

Platform Independent *See prior paragraphs under Proposed Architecture Design. 

 

 

 

 

 

 

 

 



Approach #2: Feedback-Centric Design 
 

 
 



Feedback from Sponsor 

Feedback module is overloaded with too many tasks; very dangerous for operation. Timing of module 

actions and information flow is ambiguous, especially with regards to corrective prompts from Feedback 

module. Also, system structure is too complex. 

Approach #2: Feedback-Centric Design 
 

Overview: 

 

This design is termed “feedback-centric” due to multiple interactions and high dependence of the other modules 

with the Feedback module. The Feedback module is at the “center” of system operation and provides safety 

checks for all modules. 

 

General System Operation: 

 

1. Prior to operation, the Graphical User Interface (GUI) discretizes a 3D path input from the user. The 

path is sent to the Image Segmentation module along with an MR image array. The images are 

segmented to obtain particle(s) location and material data. Then at this point, a composite image is 

created with marked particle(s) location to be relayed back to the GUI for the user visualization. 

 

2. The Control module receives the current particle(s) location and material data. It sends the Feedback 

module the desired particle location (expected result of current translation). Control then sends a prompt 

to Physics module to move the particle(s) to the desired location. After Physics executes the translation, 

the execution status is sent to Feedback. 

 

3. In the next iteration, Feedback obtains new current particle(s) location from Image Segmentation and 

compares it to the desired particle location that was previously obtained. If the locations do not match 

within reason, a special corrective prompt is sent to Control (takes priority) to pass onto Physics. 

Regardless of corrective prompt, statistics and other updates are relayed to the GUI for user discretion. 

 

4. When Control determines that the end of the path has been reached, an update is sent to Feedback, 

which stops system operation. A final notification of operation completion is relayed back to the GUI. 

 

Fulfillment of Engineering Characteristics: 

 

Structural Division of Function Design utilizes 5 modules (GUI, Image Processing, Control, and 

Feedback, and Physics) with distinct tasks. 

Safe System Operation The Feedback module functions as a safety check by detecting 

anomalies in particle translation and providing corrective commands 

for output to the hardware. It also notifies the user of detected errors 

and allows for manual intervention. 

Modular Hardware Connection *See prior paragraphs under Proposed Architecture Design. 

Platform Independent *See prior paragraphs under Proposed Architecture Design. 

 

 

 

 
 



Approach #3: Linear Design with Regular Safety Checkpoints 
 

 

 
 



Feedback from Sponsor 

This design looks good. The information flow and timing of execution is easy to follow, the safety 

checkpoints are clearly defined, and the inputs and outputs are clearly defined. 

Approach #3: Linear Design with Regular Safety Checkpoints 

Overview: 

 

This design operates in a linear fashion (modules execute in sequential order). A module cannot interact with 

the next module unless the attached safety checkpoint (one per module) is cleared. If the checkpoint is not 

cleared, the system breaks execution and alerts the user. The sequential design simplifies the information flow 

and the timing of execution for all modules. 

 

General System Operation: 

 

1. Prior to operation start, the Graphical User Interface (GUI) is fed an MR image array from the MRI 

machine. The user draws a 3D path on the GUI using the image array, which is then discretized into a set of 

coordinates. The drawn path is then processed through a safety checkpoint that evaluates the validity of the 

discretized path. 

 

2. At operation start, the Image Segmentation module receives an MR image array and the discretized path 

from the GUI. The images are segmented to obtain the particle(s) location and determine the material data 

(i.e. bone or tissue). The particle location is checked by the safety checkpoint to confirm it is successfully 

located. A composite image with marked particle(s) location is sent back to the GUI for user visualization. 

 

3. The Control module receives the particle(s) location, discretized path, and material data from the Image 

Segmentation module and uses them to compute a distance vector for particle translation. Before the particle 

is moved, the safety checkpoint confirms that the translation is safe. 

 

4. The Physics module receives the computed distance vector and material data from the control module. It 

then instructs WMP’s magnetic control system (MCS) to execute the particle translation. Once the 

translation has been executed, the MCS relays this back to the physics module. If the attached safety 

checkpoint confirms no error has occurred, the translation is deemed successful and this status is relayed to 

the GUI. Then the system begins the next iteration. 

 

Fulfillment of Engineering Characteristics: 

 

Structural Division of Function Design utilizes 5 modules (GUI, Image Processing, Control, and 

Feedback, and Physics) with distinct tasks. 

Safe System Operation Safety checkpoints are regularly placed throughout the system (one 

attached to each module) to cover error detection in various areas. 

When a checkpoint detects an error, it quickly breaks system 

execution to ensure safety and allows for user intervention. 

Modular Hardware Connection *See prior paragraphs under Proposed Architecture Design. 

Platform Independent *See prior paragraphs under Proposed Architecture Design. 

 

 



C. Decision Matrix 
 
 

 



D. Rationale for Selected Approach 
 

Programming Language 

The eight factors (ordered from most important to least important) that we considered for choosing the 

project’s programming language are: 1) integration with WMP’s existing codebase, 2) good image processing 

support libraries, 3) good Graphical User Interface (GUI) development programs, 4) ease of hardware 

integration, 5) object-oriented based, 6) good computational efficiency, 7) ease of development environment 

set up, and 8) involved monetary costs. 

 

As many of WMP’s current magnetic hardware systems use Arduino microcontrollers, a large portion 

of their existing codebase is written in C/C++. Additionally, C++ has many supporting libraries for robotics 

programming. WMP has requested that our software integrate seamlessly with their existing codebase and 

their hardware. This points towards C++ as the prefered language of choice. To perform sophisticated image- 

processing techniques for particle tracking, the image-processing module requires high-quality supporting 

libraries. Java has libraries dedicated for image-processing such as OpenIMAJ and ImageIO. MATLAB also 

has dedicated libraries for image processing such as the famous Image Processing Toolbox. However since 

WMP requests that our software integrates well with their existing codebase, C++ has access to the robust 

computer vision library, OpenCV. In addition, the GUI should be built in a well-supported application 

development framework (API). The Qt API, which runs predominantly on C++, is well-known UI 

development program and has previously been used by WMP. 

 

Because our system must execute its tasks quickly to enable well-paced magnetic particle delivery 

operation, computational efficiency is paramount. Using a low-level language (a language that is “close to the 

hardware”) like C++ will help us improve our software’s computational speed, unlike a slower language such 

as MATLAB. However, C++ also has the advantage of high-level features, namely object-oriented support. 

This would enable us to write code that can be structured into modules of functionally distinct tasks. As a 

result, code conceptual intuition improves and objects and functions can easily be reused throughout the 

software. 

 

C++ has many free and well-supported Integrated Development Environment (IDEs) such as 

Microsoft Visual Studios, MinGW, and even Qt itself. The downside to OpenCV is that its setup is a complex 

task. In terms of monetary costs, all approaches are open-source and free to use except for MATLAB. 

Nonetheless, because C++ integrates well with WMP’s existing codebase and hardware and excels in the 

factors mentioned above, we have chosen C++ as the optimal programming language for this project. 

Particle Tracking Method (Image Segmentation Method) 

Out of the four image tracking approaches considered for this application, we decided to use the early 

image subtraction method to determine particle location from image frames. This was mainly due to the 

unique circumstances with respect to the imaging procedure used for our project. An image frame without the 

particles (“early frame”) can be procured prior to the particle delivery operation and subtracted from all 

subsequent captured image frames in which the particles are present. The resulting image contains a single 

area of high color intensity (so long as the field of view is kept constant) that indicates the general particle 

area. Further image filtering techniques (e.g. bilateral, dilation) can be implemented to narrow down exact 

particle location. While this technique is not the most computationally efficient, the segmentation time is 

sufficient for our tracking purposes (~20 ms for a single 750x750 image). Due to the immense image filtering 

and arithmetic support by various open-source computer vision libraries along with the circumstances 

regarding the imaging procedure and computational efficiency, this localization method was selected for 

development. 



 
Template matching is a particle tracking technique similar to early image subtraction since it also 

requires setup prior to the particle delivery operation.. An image exclusively containing the particles at their 

initial location (“template frame”) is used to segment each incoming image frame. This technique is rather 

computationally inefficient as it requires metric calculation of each pixel within the template and incoming 

image frames (~100 ms). The template frame is also particle specific and would need to be replaced when 

imaging different particles. Additional computation is also required to account for particle rotation and 

orientation which would result in increased delay when segmenting an image batch. 

 

Using attributes from a previously captured image frame (i.e. particle location and velocity), Kalman 

filtering can be used to predict and locate particles. Similarly to the early image subtraction method, a Kalman 

filter is not particle specific and can be used to locate multiple moving particles. Despite its robust 

performance, this technique was not selected due to increased computation required to compute particle 

velocity (which is variable). Kalman filtering is also not as well supported by computer vision libraries as the 

aforementioned segmentation methods, meaning that its implementation would be more difficult. While this 

method is accurate in a 2D imaging system, the application of a Kalman filter into a 3D environment will 

require additional computation because the particle is not moving along a 2D axis and may lead to inaccurate 

particle location. Due to these limitations, a Kalman filter was not our selected particle tracking method. 

 

A mean-shift tracking algorithm can be used to track particle location through the use of histograms. 

This algorithm locates the area of maximum pixel density within an image frame by shifting the “area of 

focus” across the frame until certain user-defined criteria are satisfied (i.e. total pixel density). A major 

drawback to this method is the requirement for one area of large pixel density. Our project application 

includes imaging MRI slices of the entire cranium, meaning that image slices will consist of large areas of 

uniform pixel density. Thus, this method was not selected for development. 

Graphic User Interface (GUI) 

Four of the eight factors identified in the Decision Matrix for GUI program selection were deemed the 

most important (Commercial Popularity, Widget Toolkit, Available Libraries, Cross Platform Development) . 

Commercial popularity is significant as using a GUI software that is well-recognized by the commercial 

world can help us to meet FDA software standards, which has been one of WMP’s key goals for the project. It 

is also significant because more renowned UI programs tend to have stronger software and troubleshooting 

tools. Qt is the most popular of the four approaches, although wxWidgets was a close second. 

 

The Widget Toolkit is defined as the available graphical control elements within the GUI design. Qt is 

strongest here because it has the largest amount of available widgets compared to the others. Qt’s in-software 

libraries are more robust than the other options, providing us with access to more UI-geared functions. Cross 

platform development is significant because our software should be transferable to several operating systems. 
Also as mentioned under “Programming Language,” Qt is a familiar software to WMP which means that our sponsors 

can more easily operate and tune the GUI to their preferences after project completion. Thus, Qt is the GUI API of 

choice. 



System Architecture 

The prior section Proposed Architecture Designs details the 3 system architectures that we considered 

for our software (Control-Centric Design, Feedback-Centric Design, and Linear Design with Regular Safety 

Checkpoints). The section also contains direct feedback from WMP on the designs. The eight factors listed in 

the Decision Matrix essentially emphasize operational clarity and safety. 

 

The Control-Centric Design is attractive in theory due to the heightened role of the Control module 

compared to those in the other designs (e.g. calculating magnetic physical parameters and outputting 

commands to hardware). This is the design’s greatest strength, allowing for very simplified hardware 

communication. However, it falls flat in many of the other areas. Information flow is incredibly ambiguous, 

as is the timing of task executions which lowers operational safety as a consequence. Also, it should be noted 

that simplified hardware communication is not unique to this design. It is a characteristic of the other designs 

too since Control module in each design is also the only link between software and hardware. 

 

The Feedback-Centric Design is superior to the Control-Centric Design in that safety is the primary 

focus. Information flow and task execution are represented in a more intuitive, cyclical pattern. The Feedback 

module is at the literal center of the operation and provides inputs to most of the other modules. When a 

translation error is detected, Feedback has power over the Control module’s output to the hardware. However, 

the weaknesses of this design are the still-vague information flow and timing of task executions. Also, 

because the Feedback module handles too many tasks, it will most likely not perform well in practice. 

 

Unlike the other two designs, the Linear Design with Regular Safety Checkpoints excels in both 

operational clarity and safety. Modules execute linearly and must “pass” regular safety checkpoints to output 

their information to the next module down the pipeline. Any detected errors/failures break execution and 

notify the user to take corrective action. This reaction to error is a benefit on the development end. Errors can 

be more easily caught anywhere from start to finish and fixed to ensure smooth operation. The primary 

weakness of this design is the expected loss of operational speed due to the lack of high-level concurrency of 

execution. However, this drawback is something that we accept as a manageable tradeoff for increased safety 

and simplified design. Thus, this architecture is selected for our software. 



E. System Components Description for Selected Approach 
 

 

Graphical User Interface (GUI): 

 
Input: User-Drawn Path Input (← User), MR Image Array (← Camera/MRI Machine), Clock (← System), 

Processed Image with Marked Particles (← Image Segmentation) 

Output: Discretized Particle Delivery Path (→ Image Segmentation), GUI Execution Status (→ GUI) 

 
● The GUI is used to obtain the path drawn by the physician. 

● Displays the processed images, particle location, particle statistics, and operational status to update the 

physician on the progress of the magnetic particles. 

● Prompts the user to draw a new path if necessary. 

● Allows the user to terminate operation. 
 

Image Segmentation Module: 

 
Input: Image Array, Discretized Particle Delivery Path (← GUI) 

Output: Current Particle(s) Location, Material Data, Image Segmentation Execution Status (→ GUI), 

Processed Image with Marked Particles (→ GUI) 

● This module is used to determine the location of the magnetic particles. 

● Creates a 3D model from 2D image array input. 

● Uses image segmentation techniques to locate the magnetic particles in three dimensions. 

● Determines material composition of local particle environment. 
 

Control Module 

 
Input: Current Particle(s) Location, Image Segmentation Execution Status (← Image Segmentation), User- 

Drawn Path(← GUI) 

Output: Computed Distance Vector (→ Physics), Control Execution Status (→ GUI) 

 
● Used to determine if the particles are still on the user-created path. 

○ If particle(s) are not on track, computes distance vector to return particle(s) on track. 

○ If particle(s) are on track, computes distance vector to move particle(s) to next coordinate 

along user-defined path. 

● Ensures computed vector lies within the MCS’s technical capabilities. 

● Passes vector onto Physics module. 
 



 

Input: Computer Force Vector (← Control) 

Physics Module: 

Output: Electrical Current Specifications For Next Particle Translation (→ WMP MCS), Physics Execution 

Status (→ GUI) 

● Interfaces with hardware system to instantiate a magnetic field gradient to move particles in the 

direction of a vector supplied by the Control module 

● Sends operational status to GUI. This includes if there are any issues moving the particle(s) and if the 

path needs to be redrawn by user. 

● This module will be implemented by WMP. 
 

 

F. Applicable Formulae and/or Algorithms 
 

Below are engineering formulae that we expect to implement in our project. Note that this list is not rigid. We 

expect to utilize more formulae and algorithms as our project develops further and our strategy matures. 

 

Formulae 
 

● Biot-Savart Law - The magnetic field B at a position r generated by a current I in 3D-space over a can 

be computed using the Biot-Savart Law: 

 
● Solenoid Magnetic Field - The magnetic field B for a solenoid with n turns and current I can be derived 

from Biot-Savart Law: 
 

● Gauss’s Law for Magnetism - The magnetic field B out of a closed surface S can be calculated using 

Gauss's Law for Magnetism: 

 

Algorithms 
 

● Bilateral Filter Blurring - The output “blurred” pixel value g(i,j) of input pixel f(i,j) using filter kernel 

h(k,l) can be computed using the following formula: 

 



G. Applicable Standards and Codes 
 

The following standards are issued by the Food and Drug Administration (FDA) as industry guidelines for 

documenting the development, clinical safety, and verification and validation of medical software devices 

intended for market submission. Note that the FDA standards define “medical software device” as any device 

that contains one or more software components, parts, or accessories to carry out or supplement medical 

procedures. A medical software device may take the form of firmware, stand-alone software, software 

accessories to medical devices, etc. Because our software device is intended for therapeutic applications, we 

will adhere to these standards. We will produce and expand upon the recommended documentation alongside 

the development of our software. 
 

Guidance for Industry and FDA Staff: Guidance for the Content of Premarket 
Submissions for Software Contained in Medical Devices (2005) [7] 

 

This standard provides information regarding the FDA-recommended documentation for industry to provide in 

their pre-market submissions of medical device software. Recommended documentation covers software 

requirements and implementation, hazard analysis, verification and validation, development history, and other 

areas. Criteria for injury classification and the medical software level of concern are also clearly defined. 

 

Key Areas 

 

● Level of Concern: Criteria for establishing the appropriate level of concern (major, moderate, minor) to a 

medical software device. It is based upon device function and associated risk of injury. 

 

● Software Description: Comprehensive overview of device features controlled by the software. Describes 

software operation and intended operational environment. 

 

● Device Hazard Analysis: Analysis of hardware and software hazards associated with the device’s 

intended use. Includes corrective measures taken during hazards. 

 

● Software Requirements Specification (SRS): Provides software requirements including areas such as 

functional, performance, interface, design, etc. 

 

● Architecture Design Chart: Flowchart depicting relationships among major functional units in the 

software. Hardware interactions and data flow are typically included. 

 

● Software Design Specification (SDS): Software requirements implementation. References other 

documents such as detailed software specifications. 

 

● Traceability Analysis: Link between product design requirements, design specifications, and testing 

requirements. Hazards are coupled with mitigation testing. 

 

● Software Development Environment Description: Software development life cycle plan. This may 

include a list or description of software coding standards, configuration management, and maintenance. 

 

● Verification and Validation Documentation: Testing documentation used for vindicating that the 

medical software device performs as expected and meets stakeholder requirements. 

 

● Revision Level History: Documentation that records and lists software device version changes. 
 



 

Software as a Medical Device (SaMD): Clinical Evaluation Guidance for Industry and 
Food and Drug Administration Staff (2017) [8] 

 

This standard discusses the International Medical Device Regulators Forum (IMDRF) process used to clinically 

evaluate medical device software. The FDA considers IMDRF as a significant forum to discuss future directions 

in medical device regulatory harmonization. The 4 main components of the evaluation process include 1) 

Clinical Evaluation, 2) Valid Clinical Association, 3) Analytical Validation, and 4) Clinical Validation. 

 

Key Areas 

 

● Clinical Evaluation: A comprehensive list of activities conducted in the assessment and analysis of a 

SaMD’s clinical safety following the document’s tenets will be upkept. 

 

● Clinical Association: Statement regarding the extent to which the SaMD’s output is clinically accepted or 

well-founded and corresponds accurately in the real world to the healthcare situation and condition will be 

established along with a valid association between the SaMD output and the SaMD’s targeted clinical 

condition as recommended by the literature. 

 

● Analytical Validation: Objective evidence demonstrating that the software was constructed properly will 

be provided following the document’s template along with extensive documentation proving that all 

software specifications were met. 

 

● Clinical Validation: Software functionality will be tested against existing data from studies conducted for 

the same intended use or for a different intended use following the guidelines listed in the documentation. 
 

 

General Principles of Software Validation; Final Guidance for Industry and FDA Staff 
Document issued (2002) [9] 

 

This standard outlines general validation principles offered by the FDA to be used in the design, development, 

or manufacturing of medical device software. Suggested guidelines include System and Software Requirements, 

Data Throughput, Risk Assessment, and Error Management. 

 

Key Areas 

 

● Software Requirement Specifications: A comprehensive summary of software requirements including 

performance, I/O, functionality, and user interaction among other critical specifications. 

 

● Design Review: Proposed system designs will be systematically examined to evaluate the capability of the 

design to meet system requirements. 

 

● Testing: An exhausted list of test cases will be created using the predefined tenets for software testing. 

Verification and validation procedures will be taken into consideration as noted in the document. 

 

● Maintenance and Software Changes: Sufficient regression analysis will follow any perfective, corrective, 

or adaptive software maintenance performed as suggested by the literature. 
 



5. Next Steps 

A. Hardware Testing and Evaluation 
 

For the Fall 2018 semester, Weinberg Medical Physics has provided us with a magnetic coil array consisting 

of two pairs of solenoid electromagnets (four total) to be used for initial project testing and evaluation. This 

system allows for particle manipulation in 2D across a ~5.08 cm2 surface area and is powered by an 
independent voltage supply. Current through each solenoid is controlled through an onboard motor controllers 

capable of providing 60 Amperes of current through each channel (2 channels per motor controller, 2 motor 

controllers total). Communication with motor controllers will be achieved using microcontrollers such as 
Arduino or Raspberry Pi. Ice water is circulated through the coil array system to dissipate heat created by 

running current through each solenoid. A high-resolution optical camera will be used as the particle imaging 
system. 

 
For the Spring 2019 semester, Weinberg Medical Physics will allow us to utilize a simple MRI machine 

capable of 3D particle manipulation. Towards the end of the Spring 2019 semester, we will validate our 
control system by performing tests using their electropermanent hardware system. 

 

 

B. Criteria/Metrics 

 
To objectively evaluate project success, we have determined the following testing criteria for each of the four 

major software components. ALL criteria must be met to ensure success. 

 

Note: Testing procedures are subject to change next semester as new equipment will be made available by 

WMP for use. Project Magneto will also transition from 2D optical camera stream to 3D MR image arrays. 

 

GUI Criteria 

 

● All buttons successfully perform the specified functions. Button behavior is controlled so that the user 

cannot deviate from the operational procedure. 

● Users is able to design a complete delivery path by creating path segments across image slices; path 

segments can be modified to make appropriate changes. 

● Acquired particle location coordinates are accurate and can be represented as real-world distances. 

● Particle location is displayed on the GUI as it is updated. 

 

Image Segmentation Criteria 

● Locates particles in image slices with minimum 95% accuracy. 

● Processes and output images at a maximum period of 30 ms/frame. 

Control Module Criteria 

● Computes accurate distance vectors to move particles through delivery path. 

● Determines corrective actions if particles are not clustered around desired point along path. 

● Communicates properly with Physics Module. 

● Provide timely feedback to physician. 

● Executes operational commands from physician (i.e. pause/terminate operation, redraw path, etc.). 

 

 

 



Physic Module Criteria 

● Carries out correct particle translation using the control module outputs with 100% accuracy. 

● Begins particle translation with minimal delay (< 1s) after receiving control module outputs. 

 

C. Budget 
 

As of 11/15/2018, our project is primarily built through open-source software and total operational cost is $0. 

Any need for a budget will be discussed in future meetings with our sponsors and advisors. Hardware used for 

system testing and validation will be provided by Weinberg Medical Physics. 

 

Item Quantity Cost 

Qt Development Environment 4 $0 

Microsoft Visual Studio 2017 Community 4 $0 

OpenCV 4 $0 

Sourcetree Version Control (AWS) 4 $0 

ImageJ 4 $0 

Total Operational Cost $0 

 
 

D. Progress-to-Date and Schedule for the Next Semester 
 

Completed high-level tasks (to-date): 

 

● Image Segmentation Module 

○ Researched and implemented particle detection algorithm (early image subtraction method) 

 

● Graphic User Interface v0.01 

○ Designed layout for GUI 
○ Implemented functionality for recorded videos, 2D image stacks, and 2D optical stream 

 

● Control Module 

○ Created function to compute distance vector for particle translation 
○ Built functions used to determine if particles is on track/off track 

○ Implemented functions to determine next point along path inputted by user 

○ Integrate control module with GUI pathing input 

○ Created classes describing points for user-input path, particle-location, and material data 

 

● Website 

○ Create project website 
○ Uploaded completed project documentation (i.e. Project Proposal, Presentations, Gantt Chart, 

etc.) 



Current high-level tasks (for remainder of Semester 1): 

 

● Image Segmentation Module 

○ Implement customizable parameters 

 

● Graphic User Interface v0.02 

○ Revise layout 
○ Improve pathing 

○ Improve data log behavior 

○ Add operation settings 

○ Revise current functionality 

○ Add user guide 

 

● Hardware Integration 

○ Become familiarized with 4-coil array hardware setup 
○ Implement Software-Hardware communication 

 

● Testing and Evaluation 

○ Test Control Module performance 
○ Test GUI performance 

○ Evaluate hardware and software operations 

 

Semester 1 Gantt Chart - Fall 2018 

 
 

 



Semester 2 Gantt Chart - Spring 2019 

 
 

 

 


