

MAGNETO
Control Interface for Autonomous Delivery of

Magnetically Stimulated Particles

Team Name:
Team 7 (Nson)

Team Members:
Victor Huynh, Bassam Mutawak, Elizabeth Ankrah, Minh Quan Do

Weinberg Medical Physics Sponsors:
Dr. Lamar Mair, Dr. Chad Ropp, Olivia Hale, Dr. Irving Weinberg

Faculty Advisors:
Dr. Nathalia Peixoto, Dr. Qi Wei

Course Title:
BENG 493: Senior Advanced Design Project II

Date:
10 May 2019

Executive Summary:

This document provides a final design report for Project Magneto, the Bioengineering
senior design project in collaboration with George Mason University (GMU) and Weinberg
Medical Physics LLC (WMP) from Fall 2018 - Spring 2019. Before the start of Spring
2019, the scope of Magneto was updated after advising and discussion with both our GMU
advisors and WMP sponsors. Magneto is a C++ software interface that controls WMP’s
4-coil magnet array system for autonomous delivery of a magnetic object to user-defined
locations. The project’s primary purposes are:

1) To be a software precursor to WMP’s future magnetic particle delivery system for

non-invasive surgeries via MRI imaging and electropermanent magnet activation.

2) To improve control and versatility of WMP’s 4-coil magnet array system used for pilot
research experiments.

Magneto can be broken into 4 overarching components:

1) Graphic User Interface (GUI) - This is the user’s main tool for system operation. The GUI

implements and integrates all other components to perform particle delivery. Major
functionalities include intuitive delivery path drawing, customized data collection, and
system error detection.

2) Image Segmentation Module - This receives and processes optical images streamed via
camera. It calibrates a consistent coordinate system and physical field-of-view regardless of
the hardware orientation under the camera. It also performs detection of the magnetic object
of interest through all streamed frames.

3) Physics Module (Particle Translation Model) - This determines electrical current values
and their applied duration in order to translate the magnetic object along the delivery path.
A translation command is generated from the model and sent to the motor controller
hardware for execution.

4) Hardware Setup - This is the configuration and setup of the motor controller hardware
needed to interface with WMP’s 4-coil magnet array system. The control scheme allows for
communication from the GUI to the controllers and vice versa.

1

This report includes descriptions of the final component designs with rationale against
alternatives. Comparison and testing results are provided to address project metrics and evaluate
overall project success. Project impact and next steps are also discussed. In summary of the
major design improvements over the Fall 2018 semester:

● The GUI received a streamlined layout and additional functionality for path drawing,
system control, and more.

● Image Segmentation module now employs ArUco fiducial markers to rapidly calibrate
system orientation and utilizes a more dynamic implementation of image subtraction that
does not require acquisition of a true background image.

● The Particle Translation Model is now implemented via Regression Neural Network for
handling of multiple feature inputs. The model displayed high translation consistency.

● Hardware Setup utilizes packet serial communication protocol, allowing for bidirectional
communication with the software. Simultaneous control of multiple motor controllers
was achieved via multithreading.

The project budget total is $919.28. However, the majority of costs were covered by
Weinberg Medical Physics, LLC (see Appendix C).

*Note: From here on, the word “particle” will be used in place of “magnetic object.”

2

Project Contributors:

Team

Victor Huynh Project Manager, Front-End Design Lead

Bassam Mutawak Back-End Design Lead

Elizabeth Ankrah Testing & Evaluation Lead

Minh Quan Do System Design Lead

Advisors: George Mason University

Dr. Nathalia Peixoto Electrical & Computer Engineering Department

Dr. Qi Wei Bioengineering Department

Sponsors: Weinberg Medical Physics LLC

Dr. Lamar Mair Physicist

Dr. Chad Ropp Physicist

Olivia Hale Bioengineer

Dr. Irving Weinberg Chief Executive Officer

3

Table of Contents

1. Problem Definition ………………………………………………………… 5
a. Objectives ……………………………………………………………. 5
b. Requirements ………………………………………………………… 5
c. Metrics ……………………………………………………………….. 6

2. Final Design Description (w/ Alternate Designs and Rationale) ………….. 7
a. Graphical User Interface ……………………………………………...7
b. Image Segmentation Module ………………………………………. .14
c. Physics Module (Particle Translation Model) ………………………. 19
d. Hardware ...……………………...…….…………………………….. 28

3. Testing Methodology and Analysis …………………………………….….

31
a. Graphical User Interface ………………………….………………… 31
b. Image Segmentation Module ……………………………………….. 33
c. Physics Module (Particle Translation Model) ……………………… 36
d. Hardware ……..……………………………………………………... 42

4. Societal, Ethical, Economic, and Global Context Benefits ………………. 47

5. Summary …………………………………………………….……………. 47

6. References ………………………………………………………………… 48

7. Appendix ………………………………………………………………….. 49

a. Team Charter ………………………………………………………... 49
b. CAD Schematics ……………………………………………………. 50
c. Budget ………………………………………………………………. 51
d. Project Schedule (Full-Scope) …………………………………….... 52
e. Capstone Day Poster ………………………………………………... 53
f. Man Hours and Report Breakdown ………………………………… 54
g. Project Resources …………………………………………………… 55
h. GUI Functionality Checklist …………….………………………….. 58

4

1. Problem Definition:

Despite recent advancements in research, major limitations are holding back clinical
implementation of nose-to-brain magnetic particle delivery. These include physiological
obstructions to particle transport, magnetic field strength attenuation as particles travel to
deeper targets, and impracticality of manually operating magnet arrays in real-time. Weinberg
Medical Physics is constructing an MRI-guided, electropermanent magnetic control system
(MCS) to address many of these issues.

Automation of MCS operation is key for effective implementation as manual manipulation of
magnet arrays during surgeries is highly impractical. Magneto serves as a software precursor
to the MCS, laying the foundation for automation behavior, control flow, and user interaction.
It will provide relevant, portable user-interface and backend features for the MCS, as well as
automate and improve the accuracy of magnetic object translation via WMP’s 4-coil system.

A. Objectives

1. Design a software control interface whose features are both relevant and easily portable to

WMP’s future electropermanent MCS. Some of these features include a user-friendly and
fully functional graphic user interface (GUI), intuitive path drawing controls, delivery
automation protocol, and data collection protocol.

2. Improve control of WMP’s coil-based hardware to support future pilot experiments (for the
MCS and otherwise). This includes automating control of the hardware to eliminate human
error and improving particle translation accuracy of translation via a robust and
reproducible translation model.

B. Requirements

GUI
● Must be coded in C++ via Qt API (The Qt Company, Espoo, Finland)
● Must be able to stream and display optical images from a camera at > 30FPS
● Must consistently detect the particle through all streamed frames
● Must be able to calibrate for hardware orientation under the camera
● Must be able to receive, display, load, and save 2D path input from the user
● Must discretize user-specified path based on a specified interpolation amount
● Must include operation controls for 1) start/pause, 2) stop, and 3) force stop options
● Must collect and export data to an output file with no gaps in collection
● Must run efficiently on WMP’s proprietary computers
● Must automate the entire particle delivery operation

5

Particle Control
● Must be able to control multiple hardware components (motor controllers and solenoid

coils) simultaneously
● Must allow for bidirectional hardware communication with GUI
● Must be implemented via an operating system independent control scheme
● Must enable consistent and accurate particle translation along a user-defined path

C. Metrics

GUI

● Software Speed - measured via component lag times determined through

strategically placed elapsed timer functions within the GUI code; major values
include but are not limited to the times (with nanosecond precision) for:

• Startup
• Camera Connection
• Motor Controller Connection
• Starting/Pausing System Operation
• Applying Changes Made in Settings Window
• Stopping Further Hardware Execution

● Software Functionality - measured by calculating the Task Completion Rate

(taking the number of functional tasks completed successfully divided by the total
number of tasks). A functional task is defined as interacting with a GUI component
produce a desired output (ex. pressing “Connect Camera” button results in camera
images being streamed and displayed on the GUI in real-time).

ask Completion Rate T = T otal number of T asks

Number of T asks Successfully Completed

Particle Control

● Motor Controller Communication Rate - defined as the time between two consecutive

commands sent to the motor controllers; measured via strategically placed elapsed timer
functions within the GUI (with millisecond precision).

● Simultaneous Command Execution Delay - defined as the time between two
simultaneous commands (one to each motor controller); measured via strategically placed
timers within the GUI (with millisecond precision).

● Consistent Particle Path Translation - defined as the standard deviation between multiple
path completions of an identical desired path; measured via standard deviation of the
particle’s location throughout the path (with micrometer precision).

6

2. Final Design Description

This section describes the final design of the major project areas. Rationale for the chosen
designs is provided and, where applicable, alternative designs are described in order to
characterize the decision making process for certain project areas.

A. GUI Final Design & Description

Objective: To satisfy all the established GUI requirements and achieve high-performing metrics
(see previous Problem Definition section). Every UI component must contribute to an intuitive
user experience. Major areas of consideration include:

● UI Layout
● Setup Procedure
● Path Drawing,
● Operation Control and Automation
● Data Collection

Fall 2018 GUI Assessment: The GUI from the previous semester met basic requirements but
was limited in its functionality (i.e. path drawing convenience, image segmentation integration)
and its design intuition. It featured 3 full-sized windows (main, path drawing, and particle
detection). Each window was cluttered with various buttons (some unnecessary) and had large
lag times for displaying, making UI navigation time-consuming. Because the camera viewport
displays were different sizes between the windows, several data fields needed to be resized
when shuffled across the code. This resulted in convoluted code and generated several bugs.

Figure 1. Fall 2018 GUI Windows (main window - top left, path drawing window - top right, particle
detection window (bottom). From a functionality standpoint, 3 full-sized windows was unnecessary.

7

UI Layout

Based on the team’s assessment of the Fall 2018 GUI, the following layout objectives were
established:

1. Maximize screen space for camera image display
2. Keep all other display components contained in one defined screen region (not surrounding

the camera image display on multiple sides)
3. Have operation control buttons always visible to the user
4. Minimize the number of windows that need to be opened/viewed

Figure 2. New GUI layout. Functions are condensed to the left side of the screen, allowing for increased

space reserved for stream display.

The new UI design now utilizes a 3-tab tabwidget (Instructions, Setup, Path Drawing) on the left
side of the screen. This condenses the majority of GUI functionality into a single defined region
without introducing clutter (as the user simply switches between tabs). As a result, the number of
necessary full-sized windows is reduced to just 1 (the main window) and the space reserved for
the camera stream display is increased. The tab functions are:

- Instructions: This tab lists in-order the general steps a user needs to take to set up, start, and

complete a delivery operation.

- Setup: This tab is where the user 1) enters in his/her information, 2) specifies the save
directory and name of output data files, 3) confirms software connection to the camera and
motor controllers, and 4) accesses the settings window.

- Path Drawing: This tab is where the user can load a previously saved delivery path and draw

and save the current path. The user is provided instructions on how to draw (i.e. the correct
mouse clicks to add/remove and drag/drop path points).

8

The settings window is the other openable window. It is non-full sized, making it much less
intrusive, and allows the user to calibrate the system and make settings changes areas (see Setup
Procedure).

The operation control panel is now in the bottom-left and is always visible to the user (see
Operation Control below for more).

Setup Procedure

Before a delivery operation is started. the user must complete a brief setup procedure to ready
internal data and then draw/load the delivery path. Because of the previously mentioned UI
layout improvements and the one central settings window, this setup procedure has been
streamlined for user convenience. The core procedure is as follows:

1. Specify save directory for export data files (or use the default directory)
2. Connect GUI to camera and motor controllers (1 button press each)
3. Open settings window and calibrate system coordinates and field-of-view (1 button press)
4. Configure particle detection parameters and confirm detection within the settings window

(adjust detection parameters via sliders/spinboxes)

Figure 3. Setup Tab (left) and Settings Window (right).

9

Path Drawing

Path drawing was previously implemented via etching the path points and their connecting lines
onto the image. To display the path throughout a stream of images, the program would need to
perform repeated draw-calls for each displayed frame. This increases the software’s CPU usage
especially for paths with a large number of specified points. The etching method also prevented
the user from modifying any previous path points without first removing all points that come
after (since the points and their connecting lines are static pixels in the displayed image). This is
an incredibly tedious constraint when attempting to change an early point in a long path.

Figure 4. Old path drawing implementation uses image etching.

Path drawing is now implemented via the use of a graphics scene overlayed on top of the
displayed image/stream of images. In the code, each path point is now a graphics object that can
be dragged and dropped (no longer a part of the image itself), allowing for more robust and
convenient editing.

A new feature is the ability to load and save paths. A drawn path can be saved to a file (using the
custom “.path” extension) which stores the path’s physical coordinates (in order to remove
dependence on camera zoom). After coil localization is performed (see Image Segmentation
Module Final Design & Description section) reverse transformations are applied to a loaded
path, allowing it to be displayed correctly on the image regardless of hardware orientation under
the camera. This feature greatly increases convenience and reproducibility of delivery
operations.

The user is now able to edit two path-related fields: Interpolation Amount and Path Tolerance.
Interpolation Amount is the amount of path discretization. For example, setting this field to
“2mm” will generate path points in between the drawn markers such that no points are over 2
mm distance from each other. Path Tolerance is the acceptable distance of the particle from any
path point such that it would be considered at the point. For example, setting this field to “1.5
mm” means that once the particle is within 1.5 mm of the current target path point, the current
target path point will be updated to the next point along the path.

10

Figure 5. New path drawing implementation uses graphics scene overlay. Notice the path-related fields

on the left tab.

Operation Control and Automation

WMP specified 3 operation controls desired for their MCS.

1. Start/Pause - Allows the user to start/pause/resume the operation. During the paused state,

the user is allowed to modify certain settings (e.g. particle detection parameters, hardware
command frequency).

2. Stop - Halts the operation, properly ending hardware execution. A “Stop” command is sent

automatically if the particle reaches the end of the delivery path (which indicates a successful
operation).

3. Force Stop - Immediately halts the operation with improper closeout to hardware and the

GUI. This is used only for emergency situations.

These features have been implemented within the Operation Control Panel. Currently in the
code, “Stop” and “Force Stop” are implemented the same in that they both involve the
termination of an operation timer (whose timeout would signal the next translation command) in
order to halt hardware execution. For the purposes of the 4-coil magnet array system, this is more
than adequate for immediate stoppage. WMP’s future MCS will be capable of implementing
“Force Stop” as a more abrupt killswitch to its various hardware components.

11

Figure 6. Operation Control Panel implements the 3 controls as iconed push buttons.

Operation automation is non-conflicting linear sequence of events. Within the high-level process
listed below, there are many safeguards within the code that regulate the automation procedure.

1. The particle’s current location within the image is acquired and transformed into physical

coordinates.

2. The system compares the particle location to the target point of the delivery path (which may
be updated if reached). If no errors are detected, the system give a go-ahead to compute the
next translation.

3. The next translation command is computed by processing certain location inputs through

matrix calculations (weights of Neural Network) and feedback elements (e.g. assessing if the
previous translation resulted in undershooting).

4. The motor controller hardware receives the translation command and activates the solenoid

coils to perform the translation.

5. Steps 1 - 4 are repeated at every timeout of the operation timer (typically set to 100s of
milliseconds).

12

Data Collection

Collected data includes both numerical fields related to both traversal and hardware.

Traversal fields include:

1. Timestamp
2. Particle location pre-translation (x and y physical coordinates)
3. Particle location post-translation (x and y physical coordinates)
4. Particle distance moved (since the previous timestamp)
5. Particle velocity (since the previous timestamp)

Hardware fields include:

1. Outputted Current Scale (for each of the 4 coils)
2. Duration of Outputted Current Scale (for each of the 4 coils)
3. Total Number of Commands Executed (throughout entire delivery)

Collected data needs to be saved in a convenient, easily portable file format. The “.csv”
extension was chosen due to its accessibility and simplicity. CSV files can be opened and edited
in a variety of text editors and programs such as Notepad and Microsoft Excel. The files can also
be easily loaded into and parsed in MATLAB and can clearly distinguish between numeric and
non-numeric data.

Figure 7. “.csv” file snippet of traversal data fields.

Figure 8. “.csv” file snippet of hardware data fields.

13

B. Image Segmentation Module Final Design & Description

1. Particle Localization Method

Objective: To consistently detect the the particle location within streamed optical images. The
particle location must be detected with maximal time delay < 35 ms so as to not slow down
camera frame acquisition. For system versatility, the segmentation method should be highly
resistant to light pollution present within the image.

Particle Localization Schemes: Several localization methods (i.e. color thresholding, kalman
filter, hough circles) were briefly evaluated against the objective above. More intensive
assessment was conducted on a smaller pool of methods that exhibited strong initial promise.
These methods are:

- Image Subtraction: A preoperative image in which the particle is absent (the “background” or

“clean” image) is subtracted from later images in which the particle is present. The resulting
different image is then segmented within the area of interest (petri-dish region) and filtered to
attain particle location.

- Template Matching: A template image of the particle is used to find particle location by 2D

convolution. The template slide is “slid” over the entirety of incoming images. A pixel
comparison is made between the template image and each convolved region. Depending on
the comparison method used, the particle location is extracted from either the region with the
largest similarity or the region with the smallest similarity.

- Hough Circles: This is a feature extraction technique for circle detection within an image.

This is done by applying hough gradient to find instances of objects, given parameters to
detect a circle. In preprocessing, gaussian blur is applied to reduce noise, followed by
applying canny edge detection to better define instance outlines. Once the image is
preprocessed and the hough gradient is ran, and the algorithm works to vote upon the best
representative circle.

14

Table 1. Particle localization methods weighted decision matrix.

A method score of 5 optimally meets criteria while a score of 0 does not meet criteria.

Table 1 above is a weighted decision matrix comparing the three candidate particle localization
schemes. Initial testing revealed template matching and hough circles localization methods to be
slightly less computationally efficient and more inaccurate compared to image subtraction. The
optimal localization method was found to be Image Subtraction. However, one cumbersome
downside was that before each operation, the particle needed to be manually removed from view
so that a new background image could be captured (as any previously taken clean images will
have different hardware orientation, lightning conditions, etc.).

Image Subtraction Implementation: To eliminate the need for manually removing the particle
from view, we implemented a more dynamic method of acquiring an adequate background
image. At the same time that the user calibrates the coordinate system in the setup procedure, the
particle is translated from coil to coil 8 times. 8 images are collected, one after each translation.
The images are then averaged to mitigate the presence of the particle (which is at a different
location in each image) and synthesize a sufficiently clean background image (Figure 7).

Figure 9. Background image without particle in view (left) vs. synthesized background image from image

averaging (right).

15

2. Solenoid Coil Localization Method

Objective: To consistently map and calibrate a cartesian coordinate system based upon the
solenoid coil locations. This is remove dependence on the hardware orientation under the
camera. Each of the 4 coils defines an axis of this coordinate system. For a smooth user
experience, the maximal time delay for calibrating the coordinate system per frame must be <
190 ms. As with particle localization, this method must be highly resistant to light pollution.

Solenoid Coil Localization Schemes: Multiple coil localization methods were tested for
adherence to the above objective. Because all 4 coils in the array are visually identical, each
tested method involved distinct physical markers being placed on each coil. The methods
evaluated were:

- Color Thresholding: A colored marker is placed on each coil. Knowing the marker color

values in HSV space, the captured image is thresholded 4 times (once for each marker) to
obtain their locations. Pairs of opposing markers define an axis. The intersection of these
axes denote the origin of the coordinate system (0,0).

- ArUco Markers: A special fiducial marker (OpenCV’s ArUco) is placed on each coil. Each

marker is a square composed of a black border with a distinct inner binary pattern. The
method applies an adaptive threshold to obtain black borders, contours the image for
candidate markers, and then rejects candidates based on an internal filter. The binary pattern
of each remaining contour is then analyzed and the four corners of a marker (defining its
location) are returned. From here, the coordinate system is calibrated the same way as in
Color Thresholding.

Table 2. Coil localization methods weighted decision matrix.

A method score of 5 optimally meets criteria while a score of 0 does not meet criteria.

Table 2 above is a weighted decision matrix comparing each coil localization method against
factors critical for our application. While color thresholding proved to be slightly more
computationally efficient, poor consistency and resistance to light pollution were major
drawbacks. ArUco marker detection was found to best adhere to the objective above.

16

Markers are placed flat on a simple 3D-printed platform inserted over the coil array to ensure
clear visibility by the camera. See below (Figure 10) for images of the actual print. A CAD
render can be found attached to this document (see Appendix B). Note that the detected markers
sit over each of the coils and are not flush with the petri-dish border. This adds ~5 mm when
calculating the detected particle’s distance from coil. At a maximum, the particle’s distance from
any coil is ~40 mm and is ~5 mm at a minimum.

Figure 10. 3D-printed ArUco marker structure within coil array housing.

ArUco Marker Implementation: During initial calibration, each coil marker’s detected location
was across 20 images are stored and averaged to mitigate location noise/outliers. Camera
field-of-view (FOV) was calculated by dividing the physical distance between two coils on the
same axis (known beforehand) by the number of pixels between those coils:

istance P er P ixel D = P ixel Distance Between T wo Coils (pixels)
P hysical Distance Between T wo Coil (mm)

Using the marker locations, the axes of the cartesian coordinate system are established (line
intersection of +X and -X coil markers denotes X-axis; line intersection of +Y and -Y coil
markers denotes Y-axis). The x-coordinate of the origin point is determined by equating the X
and Y axis line segments in point-slope form. Plugging the x-coordinate back into either line
equation results in the origin’s y-coordinate. All locations in the image can be transformed to
physical coordinates with respect to this coordinate system (Figure 11). Should the camera FOV
or the hardware orientation change, the user simply reinitiates calibration process.

17

 cos(θ) ysin(θ) X = x +
sin(θ) ycos(θ) Y = − x +

Figure 11. Mapping to a rotated coordinate system. In the above equations, inputs x and y are

transformed into outputs X and Y. Picture and mathematics used courtesy of [3].

18

C. Particle Translation Modeling Design & Description

1. Particle Translation Protocol

Objective: Establish a methodology for accurately translating the magnetic particle through a
user-defined path using a solenoid coil array. Given the current state of operation (i.e. current
and desired particle locations) as an input, this methodology must return (for each solenoid) the
current scale (unitless, motor controller command instruction) and current duration (in
milliseconds) required to translate the particle.

Modelling Schemes: Three methods were considered for particle translation modelling. They
were evaluated on their ability to handle multiple input parameters and their reproducibility for
different scenarios.

- Surface Mapping: Given a dataset containing instances of particle translation, non-linear

regression would be used to identify relationships between key features. This scheme would
be highly specific to the object of interest as well as any other critical factors (i.e. liquid
viscosity, hardware setup); however, the real strength of this approach lies in its ease of
implementation and deployment. Previous use of this method in Fall 2018 proved to be
inaccurate (possibly due to suboptimal data collection at the time) and required additional
arbitrary modification within the code to output feasible translation commands.

- Mathematical Modeling: This involves formulating a model using the Biot-Savart Law for

determining the strength and direction of a magnetic field created by a solenoid coil and
using Stoke’s Law to account for the drag force exerted on a spherical object moving through
a viscous fluid. While this approach would lead to a more complete understanding of the
forces that affect particle translation, it would be extremely difficult to account for the
various physical factors in our system, such as the 4 coils in the array not being uniform
(each hand-wrapped and unique from each other).

- Regression Neural Network: A “black-box” approach that would allow the model to account

for multiple factors affecting particle translation. Given a dataset containing instances of
particle translation, a neural network can be trained using key features (i.e. current location,
desired location, distance from the coil to move towards, etc.) to predict the required current
scale to translate the object of interest. One downside to this approach is that training a neural
network model would require a tremendous amount of data that must be collected and
processed. Additional development time would need to be spent on establishing data
collection and data cleaning/preprocessing procedures.

After discussion with our advisors, a mathematical modeling approach was determined as
infeasible due to the various physical factors affecting both the particle and 4-coil system. As a
result, data-driven approaches such as a neural network or surface-mapping were deemed more
preferable options.

19

In preprocessing the data for the each approach, Scikit-Learn’s Mutual Information Regression
algorithm was used select the most relevant features for accurate particle translation (Table 3).
However, features selected by Mutual Information Regression seemed to only account for
1-dimensional particle manipulation.

For example, if the model is being built for the +X coil, Mutual Information Regression would
suggest that we use the initial X-coordinate, the final X-coordinate, the distance from the +X
coil, and the distance from the -X coil. Because none of the parameters are related to the Y-axis,
these features may be incapable of accurate particle manipulation in 2D. Therefore, two neural
network architectures were closely examined: one architecture would have four inputs (the
features selected by Mutual Information Regression) and the other would use five inputs (based
on empirical evaluation) that would theoretically account for 2-dimensional translation.

Table 3: Features determined to be relevant by Mutual Information Regression (left) and Empirical

Evaluation (right).

The development the neural network can be broken down into four distinct phases:

1. Data Collection
2. Preprocessing
3. Training and Evaluation
4. Deployment.

20

Data Collection Procedure: The first step in developing the model is to collect data. Due to the
large amount of the data points that must be collected, manual data collection would have been
infeasible, and therefore, an automated data collection procedure was implemented. Furthermore,
to simplify the collection protocol, no more than one coil was activated simultaneously. Figure
12 below depicts the automated protocol. Once the particle is detected, the protocol checks the
distance of the particle from any of the four coils. If the particle is within 20 mm of a coil, the
algorithm will automatically select the opposing coil; otherwise, if the particle is not within 20
mm of a coil, the algorithm will randomly select one of the 4 coils. From there the selected coil
will be activated with a random current scale value. A total of 30,000 instances over a period of
roughly four weeks were collected using this protocol (11,000 data points were deemed as
useable). See Figure 13 for visualization of collected particle translations.

Figure 12. Standardized automated data collection protocol.

Flow begins at particle detection and repeats for a fixed N number of times.

21

Figure 13. Starting points (green circles), endpoints (red “+”), and path (red lines) of the particle for all

trials of the data collection

Due to hardware limitations, the static 4-coil array design made it very difficult to move the
particle uniformly throughout the petri dish during the data collection process. As a result, the
particle mostly stayed in a cross pattern with clusters around the coils and there are areas (“dead
zones”) in which there are very few data points collected as evidenced by the lack of green
circles and red pluses (shown above in Figure 13).

Preprocessing: Before the data can be used to train the model, the data must be processed as
follows:

1. Remove all values where current scale is equal to zero (i.e. if the data set is meant to be used

to train the model for the +X coil, then all instances where the +X coil was not activated are
removed). This is done because oftentimes the coil is not activated during data collection and
therefore a value of zero is recorded. Therefore, using these instances when training would
introduce noise into the model. As evidenced by the distribution plots most of the instances
in the data set before cleaning had a current scale value of zero. As a result, when those
instances were removed, only 15% of the dataset remained. In most situations, removing
such a large portion of the data set is concerning; however, in our application those instances
can be safely disregarded since the model will never be used when the current scale is zero.

22

Figure 14. Data set before (top) and after (bottom) cleaning procedure in step 1 of preprocessing.

23

2. Once the dataset is cleaned, all model inputs were normalized to fall within a common scale.
In our case, the values of initial X-coordinates, initial Y-coordinates, final X-coordinates, and
final Y-coordinates are in the range of [-17.5, 17.5] mm, however the distances from the coils
were in the range of [5, 40] mm. For our purposes, Z-Score normalization was implemented
on all input features.

3. Partition the dataset up into the training set and the testing set. 80% of the data set was used

for training and 20% was used for testing.

4. Select critical features from each instance to reduce dimensionality optimize performance.
Scitkit-Learn’s Mutual Information Regression feature selection was applied to determine the
most relevant features to be used as inputs to the neural network. The feature selection
process determined that the most relevant features were the initial X-coordinate (mm), initial
Y-coordinate (mm), final X-coordinate (mm), final Y-coordinate (mm), and the distance
from coil (mm). Distance from coil is defined as the euclidean distance between the current
particle location and the coil of interest.

Architecture Comparison 5-Input vs. 4-Input Neural Network:

Model Features Selected
By

Pros Cons

4-input Mutual Information
Regression

Less complex than
5-input model

Does not account for
2D travel

5-input Empirical Evaluation Can account for 2D
travel

More complexity due
to additional
parameter

May suffer from
“curse of
dimensionality”

Table 4. 5-Input vs. 4-Input neural network architecture comparison.

4-input: The features of the 4-input neural network is selected by Scikit-Learn’s Mutual
Information Regression. The advantage to using the 4-input neural network is its simplicity in
comparison to the 5-input model. However, the disadvantage to using the 4-input neural network
lies in its inability to account for 2-dimensional travel.

5-input: The features of the 5-input neural network were determined through empirical
evaluation. Various parameters were loaded into the 5-input neural network to determine the best
parameters to use during live testing. The disadvantage to the 5-input model is its complexity in
comparison to the 4-input model. Additionally, it is subject to the “the curse of dimensionality”,
a phenomenon in which the data set has too many dimensions. This results in a sparse dataset.
The advantage of the 5-input neural network is that it can account for 2-dimensional travel. This

24

is an important feature because the model is used to traverse 2D paths.

Regression Neural Network Architecture: After careful testing and evaluation of both
architectures, a 5-input neural network model was selected as the final translation method due to
the increased propensity to account for 2D manipulation. Four neural networks (one for each
coil) were trained to predict the required current scale value using the features selected in
preprocessing step 4. Each network includes one input layer with five input nodes corresponding
to initial X-coordinate (Xo), initial Y-coordinate (Yo), final X-coordinate (Xf), final
Y-coordinate (Yf), and the distance from the coil (mm) as inputs. Furthermore, each network has
1 output representing outputs: X+ current scale, X- current scale, Y+ current scale, or Y- current
scale. Each architecture has one hidden layer with 10 hidden neurons and a sigmoid activation
function. The Levenberg-Marquardt training and optimization algorithm was implemented in
MATLAB using the Deep Learning Toolbox. The network architecture can be found below
(Figure 15).

Figure 15. Neural network architecture: consisting of 5 inputs (left), one hidden layer (middle) and
output (right).

25

Architecture Comparison 5-Input Neural Network vs. Surface Fitting:

Model Pros Cons

5-Input Neural Network Can account for 2D
translation

Can account for a large
number of parameters

Much more complex to
implement

“Black Box”

Require a large amount of
data to train model

Surface Fitting Much easier to implement

Produces an equation for the
surface, therefore not a
“Black Box” model

Less computational power is
needed to train and deploy the
model

Cannot predict current scale
values for when the ball
magnet must travel more than
40 mm across the petri dish or
when the ball magnet is more
than 10 mm away from the
coil.

Can only account for two
parameters

Does not account for 2D
translation

Table 5. 5-Input Neural Network vs. Surface Fitting translation model comparison.

5-Input Neural Network: Advantages of the neural network are: it can account for a large
number of parameters and it allows for 2D translation. Larger data requirement and increased
training complexity are two disadvantages to this approach.

Surface Fitting: A major advantage to a surface fitting model is the short development time
required for each coil. However, this model’s inability to produce a valid current scale value
(current scale value must be between 0 and 127) with varying inputs was an early indicator to
performance. 2D particle manipulation was also not feasible for the surface fitting model due to
its inability to account for more than two parameters (distance from coil and euclidean distance
to travel).

26

Surface Fitting Architecture: Four surface fitting models (one for each coil) were also
implemented in MATLAB for comparison against the neural network approach. Each model
uses the distance from the coil of interest and the distance the ball needs to travel as inputs and
outputs the current scale value. The surface was created by using MATLAB’s polyfit function.
An example surface fitting model and can be found below (Figure 16).

Figure 16. Example surface fitting model with inputs (bottom) and output (top left).

Deployment: Each trained neural network model’s weights and biases were exported to our C++
code base in order to be used with the actual system. A matrix library in C++ (Eigen) was used
to initialize the weight and bias matrices for each network. Each trained surface fitting model’s
resulting nonlinear fit equation was directly implemented in our C++ code base.

27

D. Hardware Final Design & Description.

1. Hardware-Software Communication

Objective: Establish seamless communication between graphical user interface and motor
controllers. Communication between components must be bi-directional with sufficient motor
control complexity amongst other factors.

Roboclaw Motorcontroller Control Schemes: All avenues of communication with the
sponsor supplied motorcontrollers (Basic Micro Roboclaw 2x60A Motor Controllers) were
evaluated with respect to the objective for hardware-software communication above. The
possible methods of hardware control evaluated are described below:

- Radio Control: Motors can be controlled using a hobby RC radio and subsequent RC

receiver.

- Analog: Motors can be controlled using a potentiometer or a filtered PWM signal.

- Simple Serial: Motors can be controlled using TTL level byte commands. Format is 8 bits, no
parity bits and 1 stop bit. Interfacing can be done using a microcontroller or PC using a level
shifting circuit. One-way communication, roboclaws can only receive data.

- Packet Serial: Buffered bidirectional simple serial mode. Allows for finer control of each

motor controller. Roboclaw motorcontrollers can both receive and transmit data. Interfacing
can only be done through USB or microcontroller unit (MCU).

Table 6. Roboclaw motor controller control schemes weighted decision matrix.

A method score of 5 optimally meets criteria while a score of 0 does not meet criteria.

Table 6 above is a weighted decision matrix comparing all avenues of motorcontroller control
schemes. The method that complies with the hardware-software communication objective and is
the optimal choice for this application is packet serial control.

28

Packet Serial Control Schemes: Given the optimal motor controller control scheme, various
implementations of the packet serial control method were evaluated for safety, efficiency, and
relative ease of implementation amongst other criteria. A critical feature of each method is that it
must support simultaneous control of each motor controller. The implementations evaluated
were:

- USB Control: Both roboclaws are individually connected to PC-GUI via USB. A provided
C# library can be used to send instructions to each roboclaw independently. Simultaneous
control with variable time is accomplished by implementing multi-threading within the GUI.

- Arduino Control (Two-workers): Three arduinos are used in this process. One arduino is

connected to PC-GUI using USB to microUSB cable and acts as the "master" arduino which
receives instructions from the PC-GUI. Two "worker" arduinos are each connected to
individual motor controllers. The master arduino receives instructions from PC and delegates
commands to the appropriate roboclaw. Simultaneous control is accomplished by isolating
the required busy wait of each roboclaw to separate arduinos.

- Arduino Control (One-worker): Two arduinos are used in this process. One "master" arduino

is connected to PC-GUI via USB and is also connected to a single roboclaw. Another arduino
is then connected to the master and to the remaining roboclaw. Instructions are sent from
PC-GUI to the master arduino. Master arduino receives instructions and sends commands to
worker arduino. Both master and worker arduino send instructions to respective roboclaws
for simultaneous execution. Similarly to the two-worker scheme, simultaneous control is
accomplished by isolating the required busy wait of each roboclaw to distinct arduinos.

- Raspberry Pi Control: One raspberry pi is used in this process. The PC-GUI and raspberry pi

communicate using a shared web server. The raspberry pi receives instructions from the
PC-GUI and then communicates with roboclaws via serial ports for command execution.
Simultaneous control is accomplished by implementing multi-threading within the raspberry
pi.

Table 7. Packet serial control schemes weighted decision matrix.

A method score of 5 optimally meets criteria while a score of 0 does not meet criteria.

29

Table 7 on the previous page is a weighted decision matrix comparing all implementations of
packet serial control. Alongside each implementation is the complete components list and
subsequent method cost (component prices are accurate as of 05/10/19). The packet serial control
method found to comply with the hardware-software communication objective as well as
meeting all control criteria (with the lowest method cost) was USB Control. A wiring diagram
(Figure 17) depicting all hardware connections for USB Control can be found below.

Figure 17. USB Control Wiring Diagram

30

3. Testing Methodology and Analysis

This section describes the final testing and evaluation (T&E) performed on all project
components, including obtained results and their analysis and discussion.

A. GUI Testing

Objective: Attain and assess measurements for software speed and functionality.

1. Testing Description:

A. Functionality

This was evaluated both informally and formally. Informally, several checks were
conducted by running all sections of the code repeatedly over the entire software
development life cycle to evaluate output and perform debugging. This continuous
development prevented the threat of bug accumulation as the project timeline advanced.
Formally, towards the end of the project timeline, a checklist of GUI widgets and
components was used by the team as a whole to objectively evaluate the final GUI
capabilities and deficiencies and produce a Task Completion Rate.

B. Speed

Elapsed timers with nanosecond precision were placed strategically within the code to
measure the lag times for several major GUI functions. These functions include:

■ Startup
■ Camera Connection
■ Motor Controller Connection
■ Displaying Settings Window
■ Applying Changes Made In Settings Window
■ Starting/Pausing System Operation
■ Stopping Further Hardware Execution

31

2. Results (Relevant graphs/tables):

A. Functionality - The checklist covered 37 UI components. All 37 components were found
to be fulfill their intended purpose, resulting in a 100% Task Completion Rate for the
component scope (see Appendix H).

B. Speed - Table 9 below displays the recorded lag times. Measurements are shown in

milliseconds (but still with nanosecond precision) for better time comprehension of the
software’s responsiveness.

Lag Time Measurements of Significant Functions

Function Avg Lag Time (ms) Standard Deviation (ms)

Startup 1287.1280 ms 16.5940 ms

Camera Connection 987.3840 ms 182.7573 ms

Motor Controller Connection 10.8091 ms 0.5863 ms

Opening Settings Subwindow 52.3760 ms 2.1065 ms

Applying Changes Made In
Settings Window

0.1628 ms 0.1003 ms

Starting/Pausing System
Operation

1.9845 ms 0.5634 ms

Stopping Further Hardware
Execution

0.0932 ms 0.0808 ms

Table 9. Lag times for significant GUI functions. The times for the most intensive functions (Startup and
Camera Connection) were ~1000 ms.

3. Analysis and Discussion:

A. Functionality - Because the checklist evaluation was conducted very close to the end of

the project timeline (when GUI functionality was finalized), the 100% Task Completion
Rate was expected.

B. Speed - The most intensive operations (Startup and Camera Connection) took ~1000 ms.
All other recorded times fell well below that (< 60 ms). Some standard deviation values
were large in comparison to the corresponding lag time (such as for Stopping Further
Hardware Execution), meaning that the spread was very high. However, due to how short
those lag times are (completely unnoticeable by the user), this was deemed
negligible.These obtained lag times support the high responsiveness of the software.

32

4. GUI Testing Conclusion:

Lag times were acquired as a measure of GUI speed. Due to the brevity of these times (often
under 100 ms), the GUI was deemed as responsive. The functionality checklist utilized a simple,
objective tool to assess GUI functionality. Improvements to this evaluation could be made for
future software iterations (outside of the project) by involving non-users and expanding upon the
checklist scope.

B. Image Segmentation Module Testing.

Objective: Attain a measure of consistent particle and coil marker detection over a fixed time
period under different lighting conditions. All testing was performed using image subtraction
with a synthesized background image for particle localization and ArUco markers for coil
localization.

1. Testing Description:

A. Characterized particle localization deviation:

Recorded the detected particle location in each frame over a testing period (1.0 minute)
under different lighting conditions. The particle was not moved throughout the duration
of the testing period and the lighting condition was held constant. For preliminary testing
parameters, three extreme lighting environments were used: dark room (6 Lux), ambient
lighting (80 Lux), and directly under a light source (220 Lux). An example image of each
lighting condition can be found below (Figure 18). For each testing set, a total of 50
frames were acquired and segmented to attain particle location. The resulting locations
were then analyzed for standard particle deviation amongst other statistics.

B. Characterized coil localization deviation:

Recorded each detected coil location in all incoming frames over a testing period under
different lighting conditions. The coil array was not moved throughout the duration of the
testing period and the lighting condition was held constant. Again, as preliminary testing
parameters, three extreme lighting conditions were used: dark room, ambient lighting,
and directly under a light source. An example image of each lighting condition can be
found below (Figure 18.). For each testing set, a total of 100 frames were acquired and
segmented to attain each coil marker’s location. The resulting locations were then
analyzed for average deviation amongst other statistics.

33

2. Results (Relevant graphs/tables):

A. Particle Localization Deviation For Each Preliminary Lighting Environment:

Table 10. Standard particle deviation for each tested lighting environment

B. Coil Localization Deviation For Each Preliminary Lighting Environment:

Table 11. Standard deviation of each coil’s detected ArUco marker under different lighting environments.

Figure 18. Detected particle location in different lighting conditions tested.

From left to right, the conditions tested are: dark room, ambient lighting, and under a direct light source.

34

3. Analysis and Discussion:

A. Regarding Table 10: There was no significant particle deviation for both the 220 Lux
and 80 Lux lighting environments. For the dark lighting environment (6 Lux), the particle
location could only be detected by lowering the filter threshold.

B. Regarding Table 11: ArUco markers were detected in each frame for all environments.

Largest observed standard deviation across all tested lighting environments was 0.0523
mm (Dark Room, +Y Coil). There was no significant detected marker deviation for the
80 Lux lighting environment.

4. Image Segmentation Testing Conclusion:

Two software tests were performed under different lighting conditions to attain a measure of
consistency in detecting critical features within images streamed from a USB camera. The first
test measured the standard deviation of detected particle location. There was no significant
deviation in particle location within the 220 and 80 Lux environments. The dark room
environment required a lower filter threshold to locate the particle and resulted in the highest
location deviation of 0.3432 mm. Our project application does not involve operating in low
lighting conditions, so we do not see this as a limitation.

The second test measured standard deviation of each detected coil marker location. Detection of
coil markers in the 6 Lux lighting environment performed the worst (out of the three
environments tested) with an average deviation of 0.0266 mm across all four coil markers.
Markers were detected with no significant deviation in the other two light environments (0.0049
mm and 0 mm respectively for 220 and 80 Lux environments).

35

C. Particle Translation Modeling Testing

1. Testing Description:

A. Comparing neural network and surface fitting regression results:

Using the collected data, several neural network architecture designs were tested with
varying feature inputs, number of hidden layers, number of hidden neurons, and
activation functions. The number of hidden layers was varied between 1 - 3 and the
number of hidden neurons was tested at 10, 15, 20, 30, and 60. It was determined that 1
hidden layer with 10 hidden neuron was the best option for deployment. More complex
architectures did not provide any significant increase in performance (measured by R2
correlation coefficient). Both the neural network and the surface-fitting model were
trained on the same training set and the evaluated using the same testing set.

B. Neural Network Architecture Traversal Comparison:

The paths traversed by the particle using a 4-input neural network model approach was
compared to the path traversed using the 5-input neural network model. Both tests
utilized an identical desired path and starting conditions (initial particle location, total
path interpolation amount, path tolerance) and were performed in ambient lighting
conditions.

C. Comparing neural network and surface fitting translation results:

The paths traversed by the particle using a neural network model approach was compared
to the path traversed using the surface fitting model. Both tests utilized an identical
desired path and starting conditions (initial particle location, total path interpolation
amount, path tolerance) and were performed in ambient lighting conditions.

D. Neural network average traversed path:

The standard path deviation was calculated for N = 10 particle translations using a neural
network modeling approach on the same desired path with identical starting conditions
(initial particle location, total path interpolation amount, path tolerance) and were
performed in ambient lighting conditions. All paths were averaged and a standard
deviation was computed to provide a measure of consistent path translation.

36

2. Results (Relevant graphs/tables):

A. Comparing neural network and surface fitting regression results:

Figure 19. Predicted vs. Expected current scale with linear correlation coefficient (R2) for 5-input neural

network

Figure 20. Predicted vs. Expected current scale with linear correlation coefficient (R2) for surface fitting

model.

37

Table 12. Linear correlation coefficient (R2) comparison for surface fitting and

neural network models across all four coils.

38

B. Comparing neural network and surface fitting translation results:

 Path Comparison (NN vs. SF)

Figure 21. Path comparison between neural network (blue) and surface fitting (green)

translation models across the same desired path (red).

C. Neural Network Architecture Traversal Comparison:

Path Comparison (5-Input vs. 4-Input)

Figure 22. Path comparison between 5-Input neural network (blue) and 4-Input neural network (green)

 across the same desired path (red).

39

D. Neural network average traversed path:

Figure 23. Average path traversed (red dashed line) using neural network model for N = 10 trials.

3. Analysis and Discussion:

A. Regarding Figure 19, Figure 20, and Table 12: As evident by Table 12, the linear

regression coefficient (R2) for neural network (0.88 - 0.99) was much higher across each
trained coil compared to the R2 of the surface fitting model (0.65 - 0.729). According to
Figure 20, the predicted current scale value was considerably larger or smaller than
ground truth. These two factors were early indicators that a neural network approach was
more applicable to our design. Further testing (after deployment) was required before a
final translation model was selected.

B. Regarding Figure 21: Both the neural network and surface fitting translation models

were tested using the same starting particle location and desired path. Both models
showed similar translation towards the center of the operating area however the surface
fitting model would always cause the particle to overshoot closer to the coils compared to
the neural network which performed consistently throughout the desired path. Coupled
with the previous analysis, these results proved a neural network approach to be the
superior particle translation model.

40

C. Regarding Figure 22: Once a neural network was determined to be the superior option to
the surface fitting model, further architectural comparison was required before final
deployment. Upon testing the 4-input model and the 5-input model, the 4-input model
performed almost exactly the same as the 5-input model along every point in the path
except for when the particle was close (around 10 mm) to the +Y coil. Whenever the
particle was close to the +Y coil, the predicted current scale value produced by the 4-input
neural network would consistently cause the particle to overshoot. Therefore, it is
determined that the 5-input neural network is the best architecture to use for a particle
translation model.

D. Regarding Figure 23: A total of 10 neural network actual particle translation paths were

collected using identical desired path and starting conditions (starting particle location)
across each trial. The location of the particle along the path was exported and evaluated
for standard deviation and the average path. Across all trials, an average 0.85 mm standard
deviation in particle location was observed.

4. Particle Translation Model Conclusion

To determine the optimal neural network design, several different network architectures were
tested with varying number of hidden layers and hidden neurons. The optimal architecture was
found to be 1 hidden layers with 10 hidden neurons resulting in a correlation coefficient of 0.92.
The neural network translation model was found to perform more consistently across an identical
desired path compared to surface fitting. The average standard deviation observed for N = 10
path translations in ambient lighting using a neural network approach was 0.85 mm. This
measure of consistency was considered acceptable given the standard deviation of detecting the
particle in ambient lighting (0.0521 mm) and other factors such as solution dynamics. In
conclusion, a 5-input neural network was implemented as the final particle translation approach.

41

D. Hardware Testing

Objective: Attain a measure of consistency between hardware-software communication over a
long testing period. All testing was performed with the final motor controller control method
(Packet Serial, USB Control).

1. Testing Description:

A. Characterized total time for complete hardware execution:

Recorded the time for a complete hardware command execution (with millisecond
precision) throughout the testing period. Time was obtained via use of strategically place
elapsed timers in the code and debugging statements. Tested various applied current
durations (time duration that current is being sent to hardware per software command) in
multiple sessions to detect potential trends between the current duration and lag time. The
current duration was tested between 75 - 200 ms in increments of 25 ms.

For each current duration value, 500 total software commands were sent with a brief 1s
pause between commands (8.333 minutes per test session). Time period for complete
hardware command execution was recorded for each command. One testing set was
performed with only one motor controller being activated. The other testing set was was
performed with activating two motor controllers simultaneously (with the same current
duration range).

B. Characterized time difference between simultaneous activation of our 2 motor

controllers:

Recorded the time delay (with millisecond precision) between the completion of two
simultaneous motor controller commands. Like the previous test, the applied current
duration was varied to detect any trends between command completion and current
duration. The current duration was tested between 75 - 200 ms in increments of 25 ms.

For each current duration value, 500 total commands with a brief 1 s pause between
commands were sent activating both motor controllers (also 8.333 minutes per test
session). Time delay between the completion of each motor controller command was
recorded for each command during the test sessions.

42

2. Results (Relevant graphs/tables):

A. Total hardware command execution time for one-coil (top) and two-coils (bottom) being
activated:

Figure 24. Hardware command execution time for one coil activation.

Legend depicts total current duration used for each line.

Figure 25. Hardware command execution time for two coil activation.

Legend depicts total current duration used for each line.

43

B. Time difference between simultaneous motor controller command completion:

Figure 26. Time difference between simultaneous motor controller command completion

 for 75ms, 100ms, 125ms total current duration.

Figure 27. Time difference between simultaneous motor controller command completion

for 150ms, 175ms, 200ms total current duration.

44

3. Analysis and Discussion:

A. Regarding Figures 24 and 25: Total hardware execution time for one-coil (top) and
two-coils (bottom) being activated:

A general trend observed between both one-coil and two-coil activations is increasing the
total current duration time increased the execution time standard deviation over the
duration of the testing period. See table 9 below for results across both one and two coil
activation tests. Across all current durations, the average standard deviation was 0.4786
ms and 0.4238 ms for one and two coil activations respectively.

Table 13. Recorded execution time standard deviation (ms) for all desired times (ms) tested

for one and two coil activations.

B. Regarding Figures 26 and 27: Time difference between simultaneous motor controller
command completion:

Similarly to the previous test, a general trend observed is increasing the total current
duration time increased the time difference standard deviation over the testing period.
See table 10 below for full results. Across all current durations, an average 0.5940 ms
standard deviation was observed.

45

Table 14. Measured time delay between simultaneous motor controller

activations across different current durations.

4. Hardware Testing Conclusion:

Two hardware tests were performed to attain a measure of consistency between
hardware-software communication. The first test performed attempted to characterize the total
hardware command execution time with varying current durations. Across all current durations
tested, 0.4786 ms and 0.4238 ms average standard deviations were observed for the one-coil and
two-coil tests respectively. While there was an increased standard deviation observed when
increasing the current duration, the average standard deviation across both test sets is still
relatively low. Looking ahead, we do not expect this value to affect project performance.

The second test attempted to characterize the time difference between simultaneous motor
controller command completions. Ideally, given the same current duration, both motor
controllers will complete instructions at the same time. Across all current durations, an average
0.5940 ms standard deviation was observed and a 0.5166 ms average time difference between
simultaneous command completions. While this time difference can be further mitigated by
applying a short delay (~0.3 ms) before one of the two motor controller command being sent, we
do not expect an average time difference of 0.5166 ms to significantly affect project
performance.

46

4. Societal, Ethical, Economic and Global Context Benefits

Clinically feasible non-invasive targeted drug delivery/therapy can allow for efficient uptake of
drugs/payloads to target sites within the body while mitigating any adverse effects to
surrounding tissues. Magnetic particle delivery has shown promise as the control mechanism for
targeted drug delivery but suffers from obstacles such as magnetic attenuation and physiological
obstacles to particle transport. The realization of WMP’s future MRI-guided MCS serves to
address these problems, but its operation must be automated via safe and effective control
procedures implemented in software. Automated operation would also to reduce the workload
and human error from surgeons.

Project Magneto serves as the precursor to this software control interface and lays the
foundation for automated control. The enhancements made to the control of WMP’s 4 coil MCS
help to aid in any future pilot experiments working towards their final product. Furthermore,
project Magneto acts as a testing platform for WMP to prototype particle manipulation methods
in a consistent manner. Any ethical concern of the software system limiting human judgement is
mitigated by an executive user control panel which includes an emergency button stopping all
particle translation. Increasing safety, consistency, and automation. Magneto is a software that
aids in the growth of both automated and augmented robotics.

5. Summary

The Fall 2018 prototype of Project Magneto was functional but not serviceable. While a particle
could be delivered along a user-defined path, translation was not consistent and was unreliable.
The software handled operation data poorly, was limited to what it could do, and was highly
computationally intensive.

In Spring 2019, several enhancements have been made to the project components. The GUI
design received a design and code overhaul, boosting the user experience, functionality, and
computational performance. Using fiducial markers, image segmentation can automatically
calibrate the hardware orientation and physical field-of-view while being highly resistant to
image noise. A newly implemented particle detection protocol removes the cumbersome need
for manual capture of a background image. An improved hardware communication method
simplified hardware connection to the gui and allowed for simultaneous control of multiple
hardware components. A neural network approach for particle translation proved to be highly
consistent and reliable in manipulating the particle. Final testing and evaluation showed
exceptional results in all major project components.

We conclude that project Magneto has successfully accomplished its objectives and
requirements. The next step for our project is to turnover of all hardware and software systems
to Weinberg Medical Physics. A software package including source code, executables, and
guiding documentation will be included in the transition. If required, necessary modifications
will be made to ensure smooth integration of our system to the future experiments by WMP. We
are proud to have taken part in the realization of WMP’s solution for clinical magnetic particle
delivery.

47

6. References

[1] B. Shapiro, S. Kulkarni, A. Nacev, S. Muro, P. Y. Stepanov, and I. N. Weinberg, “Open Challenges in
Magnetic Drug Targeting,” Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 7, no. 3, pp. 446–457,
May 2015.

[2] Krizhevsky, A., Sutskever, I. & Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp. 3-4, May 2017.

[3] J. Stewart, “Single Variable Calculus: Early Transcendentals 8th edition - James Stewart - Google
Books.” pp. 412-414, January 2016.

48

7. Appendices

A. Team Charter

1. Safety Considerations
The only significant safety hazards for our project involve the motor controller and solenoid coil
hardware. The motor controllers and DC power supply will be kept away from any liquids. The
solenoid coils will checked frequently during usage for overheating so as to prevent any damage
to the system. All testing will allow follow any safety protocol specified by WMP.

2. Provided Equipment
WMP has provided the 4-coil MCS as a testing environment for our software system. The
provided system includes: the four-coil array, water housing, two motor controllers, and a power
supply. All equipment provided by WMP will be returned at the end of the project timeline.

3. Work Location(s)
● Weinberg Medical Physics - 12156 Parklawn Dr, Rockville, MD 20852
● George Mason University Peterson Hall - Fairfax, VA 22040

4. Best Effort Basis
To fulfill the project requirements and objectives, we have performed the technical and
administrative work required for our project to the best of our ability throughout both the Fall
2018 and Spring 2019 semesters.

5. Handling of Restricted Data
Any data provided by WMP that is designated as confidential will be restricted to viewing and
usage by members of our senior design team and, if allowed by WMP, our GMU advisors. This
data can include, but is not limited to:
● Code scripts
● Equipment pictures
● Patents (and applications)
● Future company plans or experiments

49

B. CAD Schematics

Figure 24. CAD design of 3D-printed ArUco holding platform.

50

C. Budget

Item Quantity Cost

 Qt Development Environment 4 $0

 Microsoft Visual Studio 2017 Community 4 $0

 OpenCV 4 $0

 Github Version Control 4 $0

 27V 1.593kW Power Supply * 1 $360

 ArUco Markers 4 $0.50

 Roboclaw 2x60A Motor Controllers * 2 $400

 Ipevo Ziggi USB Camera * 1 $148

 4-Coil Magnetic Solenoid Array * 1 N/A

 Micro USB to USB 2.0 2 $10.78

 Total Operational Cost $919.28

Table 11. Amount of money spent on individual components of the project.

* Supplied by Weinberg Medical Physics, LLC

51

D. Project Schedule (Full-Scope)

Below is an overview of our Spring 2019 project schedule (containing both our accomplishments and
in-progress tasks). These include both technical and administrative (for BENG 493) tasks.

Month Due Task (w/ Status)

February ● BENG 493 Activity Report #1 (complete)
● BENG 493 Activity Report #2 (complete)
● BENG 493 Homework #1 - Prototype T&E (complete)
● Plan GUI design overhaul (complete)
● Plan GUI data collection overhaul (complete)
● Plan Image Segmentation FOV automation (complete)
● Create initial GUI tests checklist (complete)
● Conduct T&E on Fall 2018 GUI prototype (complete)
● Revise and reorganize GUI base code (complete)

March ● BENG 493 Homework #2 - Prototype T&E Results (complete)
● BENG 493 In-Progress Presentation and Report (complete)
● GUI design implementation in code (complete)
● GUI user path drawing via QGraphicsScene (complete)
● GUI image streaming via OpenGL (complete)
● Create base GUI settings window (complete)
● Create separate Data Collection GUI (complete)
● Create and run operation control test cases (complete)
● Implement and test color detection for coil localization (complete)
● Implement and test ArUco markers for coil localization (complete)
● Design and 3D-print platform for placing ArUco markers (complete)
● Implement 2-way direct USB motor controller-to-computer communication

(complete)
● Finalize GUI Path Drawing Supplemental Features (complete)
● Plan Image Segmentation automated particle detection (complete)
● Revise neural network architecture for particle translation modelling

(complete)
● Revise data collection protocol (collection scheme and code) (complete)

April ● Implement system error detection (complete)
● Refine GUI data log fields and format (complete)
● Implement automatic motor controller connection with GUI software

(complete)
● Implement and test finalized particle detection method (complete)
● Test and finalize neural network model for particle translation (simulated vs.

actual results) (complete)
● Revise data collection protocol (collection scheme and code) (complete)
● Transition finalized neural network into project’s C++ codebase (complete)
● Continually monitor and optimize GUI computational performance (complete)
● Deploying GUI software from Debug to Release versions (complete)
● Capstone Day presentation (complete)
● Major course assignments (complete)

52

E. Capstone Day Poster

Note: A separate PDF attachment is provided along with this report.

53

F. Man Hours and Report Breakdown

 Victor Bassam Minh Elizabeth Team

Fall 2018 367 297.75 281 188 1133.75

Spring 2019 317.75 273.5 176.75 148.5 916.5

Total 549.75 431.75 369.75 274.6 2050.50

Table 10. Team member final man-hours across Fall 2018 and Spring 2019 (table format).

Figure 25. Team member final man-hours across Fall 2018 and Spring 2019 (bar chart format).

54

G. Project Resources

This appendix serves to a brief guide to others who wish to implement the resources used for conducting
this project.

1. Qt

Qt (pronounced “cute”) is a free and open-sourced widget toolkit for creating GUI. It is compatible with
multiple platforms such as Windows, Linux, and macOS. This was used for the creation of our GUI.

How to download: Qt can be downloaded from the Qt website (https://www.qt.io/). There is a free and
commercial version that can be downloaded. For the scope of this project, the free version is sufficient. In
order to properly install this software,

Prerequisites: In order to properly use Qt, programmers must be:

● Proficient in C++ (see Learning C++ later in the appendix)
● Basic knowledge on how to use Microsoft Visual Studios
● Link OpenCV to the project opened in QtCreator (Qt’s own IDE)
● Link Microsoft Visual Studios compiler to project opened in QtCreator

Links for learning: Below are helpful links for learning Qt

● ProgrammingKnowledge’s beginner series teaching widget tools, windows, etc.
https://www.youtube.com/playlist?list=PLS1QulWo1RIZiBcTr5urECberTITj7gjA

● Rbaleksandar series on integrating OpenCV and using signals and slots (Part 1 – Part 4)
https://www.youtube.com/watch?v=vKIEzqmeajQ

● VoidRealms’s video on Qt Debugger https://www.youtube.com/watch?v=B7UsWtyhXh4
● VoidRealms’s guide on QThread (for concurrent processing) (Part 1 – Part 6)

https://www.youtube.com/watch?v=JaGqGhRW5Ks

2. MATLAB Deep learning toolbox

The Deep Learning Toolbox TM (formerly Neural Network Toolbox ™) is a toolbox provided (through
purchase) with in the MATLAB software. It provides a platform for designing and implementing the
Neural Network used for particle translation. The weights achieved from the model is the most important
feature.

How to download: MATLAB and its toolbox may be purchased and downloaded directly from the
website (https://www.mathworks.com).

Prerequisites:

● Proficiency in MATLAB
● Understanding of NN

55

https://www.qt.io/
https://www.youtube.com/playlist?list=PLS1QulWo1RIZiBcTr5urECberTITj7gjA
https://www.youtube.com/watch?v=vKIEzqmeajQ
https://www.youtube.com/watch?v=B7UsWtyhXh4
https://www.youtube.com/watch?v=JaGqGhRW5Ks
https://www.mathworks.com/products/deep-learning.html

How to create Neural Network in Matlab: The Neural Fitting app is a GUI that allows users to build
their NN. Programmers can learn how to properly use it through:
https://www.mathworks.com/help/deeplearning/gs/fit-data-with-a-neural-network.html. In addition the
the GUI programmers may code it. The MATLAB mathworks platform should be used to answer any
specific questions or address any problems.

Acquiring NN Weights:
https://www.mathworks.com/help/deeplearning/ref/getwb.html?s_tid=doc_ta

3. ArUco

ArUco is an open sourced library that is used through OpenCV. It is used for detecting squared fiducial
markers (“ArUco markers”) in images.

Prerequisites:

● Proficiency in C++
● Download and set up OpenCV and OpenCV - contrib
● Download Microsoft Visual Studio

Links for learning:

● Opencv documentation on how to use Aruco markers
https://docs.opencv.org/3.4.0/d5/dae/tutorial_aruco_detection.html

● Original documentation by creators is on an open access google doc
https://docs.google.com/document/d/1QU9KoBtjSM2kF6ITOjQ76xqL7H0TEtXriJX5kwi9Kgc/e
dit

● Rafael Muñoz Salinas (the creators) video tutorial on ArUco
https://www.youtube.com/playlist?list=PL7EOs-8ZXfMb2qRog9wOa3Ar-EyvRYdrp

4. OpenCV 3.4.5

OpenCV (Open Source Computer Vision Library) is an open sources library for computer vision and
machine learning softwares. Multiple libraries are used in order to create the image segmentation features
needed to track, and identify objects for our system.

How to download: OpenCV can be downloaded from the GitHub repository
(https://github.com/opencv/opencv). Please follow the documentation on the github to download and
install the base OpenCV library. To download the required contrib libraries, please follow this youtube
link (https://www.youtube.com/watch?v=MMDABTypnZg).

Documentation: Can be found on the Opencv doc website (https://docs.opencv.org/) be sure to specify
the version you wish to use. This contains information about all libraries and their functions.

Links for integrating OpenCV with various platforms:

● Stackoverflow response for setting up OpenCV with QTcreator. Look at second answer
https://stackoverflow.com/questions/15881913/how-to-link-opencv-in-qtcreator-and-use-qt-library

● Video on how to integrate OpenCV with Microsoft Visual Studios:
https://www.youtube.com/watch?v=oJ6fh-XLjtg

56

https://www.mathworks.com/help/deeplearning/gs/fit-data-with-a-neural-network.html
https://www.mathworks.com/help/deeplearning/ref/getwb.html?s_tid=doc_ta
https://docs.opencv.org/3.4.0/d5/dae/tutorial_aruco_detection.html
https://docs.google.com/document/d/1QU9KoBtjSM2kF6ITOjQ76xqL7H0TEtXriJX5kwi9Kgc/edit
https://docs.google.com/document/d/1QU9KoBtjSM2kF6ITOjQ76xqL7H0TEtXriJX5kwi9Kgc/edit
https://www.youtube.com/playlist?list=PL7EOs-8ZXfMb2qRog9wOa3Ar-EyvRYdrp
https://github.com/opencv/opencv
https://www.youtube.com/watch?v=MMDABTypnZg
https://docs.opencv.org/
https://stackoverflow.com/questions/15881913/how-to-link-opencv-in-qtcreator-and-use-qt-library
https://www.youtube.com/watch?v=oJ6fh-XLjtg

5. Eigen 3.3.7

Eigen library is a C++ matrix library used to deploy our trained neural network into the C++ codebase.

How to download: The full eigen library can be downloaded and installed using the following link
(https://eigen.tuxfamily.org/dox/GettingStarted.html).

Documentation: Comprehensive documentation on all available functions and packages can be found
here (http://eigen.tuxfamily.org/dox/).

6. C++ Programming Language

C++ is a object-oriented programming language with low-level language capabilities. The majority of the
project was coded in C++. This is a prerequisite for all other softwares except Matlab.

How to download: Can be accessed through Microsoft Visual Studios (MVS). See the MVS section
below.

Prerequisite: Microsoft Visual Studios

Learning: There are multiple online course and resources available to learn C++ online. Lynda.com and
udemy are some website used to learn C++.

7. Microsoft Visual Studios (MVS)

MVS is an integrated development environment. This was used to prototype and test back-end code
before deployment into the QtCreator platform to create our GUI.

How to download: The community version was downloaded from the website
(https://visualstudio.microsoft.com/downloads/). Be sure to download C++ development atmosphere.

Links for learning:

● Steps provided by Microsoft on how to install MVS
(https://docs.microsoft.com/en-us/cpp/build/vscpp-step-0-installation?view=vs-2019)

8. Roboclaw

Roboclaw 2x60A motor controllers are directly connected to the GUI and send current through our coils.
These hardware components are controlled through a C++ library of functions.

How to download: Several libraries to control the roboclaw can be found on the product web page
(https://www.basicmicro.com/RoboClaw-2x60A-Motor-Controller_p_8.html). It’s important to note that
a C++ implementation of this library (which our project uses) is not available on the website. In general,
our C++ implementation is based on the Arduino roboclaw library (see link product page link). The actual
implementation can be found in the software package attached to this report.

Prerequisite: ROS Serial Library (http://wiki.ros.org/serial).

57

https://eigen.tuxfamily.org/dox/GettingStarted.html
http://eigen.tuxfamily.org/dox/
https://visualstudio.microsoft.com/downloads/
https://docs.microsoft.com/en-us/cpp/build/vscpp-step-0-installation?view=vs-2019
https://www.basicmicro.com/RoboClaw-2x60A-Motor-Controller_p_8.html
http://wiki.ros.org/serial

H. GUI Functionality Checklist

See next page.

58

Section Widget/Component Purpose
Functional

(Y = 1/N = 0)
Camera Viewport Displays images streamed from the connected camera.

No lag nor screen tear artifacts should be present
1

Exit Dialog When the user presses the exit button on the window,
this prompts him/her to confirm if he/she actually wants
to exit the software.

1

User Name Line Edit Allows the user to enter his/her name which will update
the data log filenames appropriately.

1

Browse Save Directory Button Allows the user to select the directory in which to export
collected data.

1

Data Log Filename Line Edits Allows the user to modify the name of the output data
files.

1

Use Default Filenames Checkbox Resets the data log filenames to a conventional default
format

1

Connect Camera Button Connects the camera to the software and begins
streaming to the viewport

1

Connect Motor Controllers Button Connects the roboclaw motor controller hardware to the
software

1

Settings Window Button Opens the settings window. Enabled only after both the
camera and motor controllers have been connected.

1

Go to Path Drawing Button Enables and opens the path drawing tab. Enabled only
after all necessary settings operations have bene
performed.

1

Calibrate System Button Executes the calibration of system coordinates and field-
of-view; output should show the bounding box, detected
axes, and particle movement during the calibration
period

1

Filter Threshold Slider Modifies the pixel threshold data field for image
subtraction; updates the value in the corresponding
spinbox

1

Filter Threshold Spinbox Modifies the pixel threshold data field for image
subtraction; updates the position of the corresponding
slider

1

Minimum Particle Size Slider Modifies the minimum particle size data field for image
subtraction; updates the value in the corresponding
spinbox

1

Minimum Particle Size Spinbox Modifies the minimum particle size data field for image
subtraction; updates the position of the corresponding
slider

1

Maximum Particle Size Slider Modifies the maximum particle size data field for image
subtraction; updates the value in the corresponding
spinbox

1

Maximum Particle Size Spinbox Modifies the maximum particle size data field for image
subtraction; updates the position of the corresponding
slider

1

Display System Axes Checkbox Toggles whether to display the calibrated system axes on
streamed images; purely cosmetic option

1

Command Frequency Spinbox Modifies the frequency at which to output translation
commands to the motor controllers; can be edited during
paused operation

1

GUI Functionality Checklist - evaluated by Team NSON

This spreadsheet is used for objective evaluation of GUI functionality
(e.g. Do the UI components and widgets fulfill their intended purpose?).

Main Window -
General

Main Window - Setup
Tab

Settings Window

Preview Button Preview image subtraction results using the set Filter
Threshold, Mininum Particle Size, and Maximum Particle
Size parameter values; detection changes should be
instant noticeable on the viewport

1

Apply Settings Button Confirms all setting values within the Settings Window;
updates data fields across the rest of the GUI as
appropriate

1

Cancel Settings Changes Button Cancels any changes to values within the Settings
Window and exits the window

1

Show Drawing Instructions Drop-Down Toggles display of bulleted path drawing instructions;
pushes other tab components down appropriately

1

Show Path Info Drop-Down Toggles display of path-related fields; pushes other tab
components down appropriately

1

Load Path Button Opens file explorer dialog and prompts user to select a
".path" file; if a current path is present, confirms with
user if he/she wishes to override that path with the
loaded path

1

Save Path Button Prompts user if he/she wishes to save the current path
and opens a file explorer dialog to select the save
directory

1

Draw/Pause Draw Path Button Enables/unables the user to click, move, and remove
path point markers over the camera viewport

1

Clear Path Button Clears the current path after confirming with user if
he/she no longer needs the current path

1

Interpolation Amount Spinbox Modifies the interpolation amount data field (level of
path discretization for actual delivery)

1

Path Tolerance Spinbox Modifies the acceptable delivery deviation data field 1

Confirm Path Button Processes path point locations and path-related values
through the GUI; if no errors detected, enables usage of
the Operation Control Panel

1

Start/Pause/Resume Operation Button Starts/pauses/resumes the delivery operation; while
delivery is ongoing, users should have limited freedom
navigatign other UI components; in paused state, user

1

Stop Operation Button Stops the delivery operation regardles of current
detected particle position

1

Force Stop Operation Button Stops the delivery operation regardles of current
detected particle position (for this project, same as Stop
Operation functionality)

1

Save Camera Stream Checkbox Writes streamed camera images into an output video file
starting from when the checkbox is checked to when it is
unchecked (or when delivery is finished)

1

Main Window -
Instructions Tab

Instructions List Displays instructions for conducting a delivery operation 1

Main Window -
Operation Control

Panel

Main Window - Path
Drawing Tab

Report Breakdown (Team Contribution)

Victor Huynh
● Executive Summary
● Contributors
● Problem Definition
● Requirements (GUI)
● Metrics (GUI)
● Final Design (GUI)
● Testing Methodology (GUI)
● Societal, Ethical, Economic and Global Context Benefits
● Summary
● References
● Team Charter
● Project Budget
● CAD Schematics
● Project Schedule
● Project Man-Hours
● Project Resources

Bassam Mutawak

● Requirements (Hardware Control)
● Metrics (Hardware Control)
● Final Design (Hardware Control)
● Final Design (Image Segmentation)
● Testing Methodology (Hardware Control)
● Testing Methodology (Image Segmentation)
● Societal, Ethical, Economic and Global Context Benefits
● Summary
● References
● Team Charter
● Project Budget
● CAD Schematics
● Project Schedule
● Project Resources

Minh-Quan Do

● Final Design (Particle Translation Model)
● Testing Methodology (Particle Translation Model)
● References
● Project Resources

Elizabeth Ankrah

● Contributors
● Metrics (GUI)

● Final Design (Image Segmentation)
● Testing Methodology (GUI)
● Societal, Ethical, Economic and Global Context Benefits
● Project Man-Hours
● Project Resources

